A bi-level mathematical programming for cell formation problem considering workers’ interest
Abstract
Nowadays, the necessity of manufacturers’ response to their customers’ needs and their fields of activities have extended widely. The cellular manufacturing systems have adopted reduced costs from mass-production systems and high flexibility from job-shop manufacturing systems, and therefore, they are very popular in modern manufacturing environments. Manufacturing systems, in addition to proper machinery and equipment, workforces and their performance play a critical role. 
Staff creativity is an important factor in product development, and their interest in cooperating with each other in the work environment can help the growth and maturity of this factor. In this research, two important aspects of cellular manufacturing take into consideration: Cell formation and workforce planning. Cell formation is a strategic decision, and workforce planning is a tactical decision. Practically, these two sectors cannot be planned simultaneously, and decision making in this regard is decentralized. For this reason, a bi-level mathematical model is proposed. The first level aims to reduce the number of voids and exceptional elements, and the second level tends to promote the sense of interest between the workforces for working together, which will result in synergy and growth of the organization. 
In order to solve the proposed bi-level model, it was first changed to a mathematical model with one level using KKT method and then solved by LINGO software. To verify the proposed model, an active cellular manufacturing unit was studied, and the results were presented. This bi-level method makes it possible to find the balance point of the two objectives.
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1- Introduction
A system is a purposeful combination of staff and managers, facilities, information, and operational methods in the environment. Transforming raw materials, capital, information, and other resources to products or value-added services is the base of a manufacturing system. Nowadays, achieving customer satisfaction and competitive advantage requires the development of products and services, or even entering new items in the manufacturing portfolio of various industries and businesses. Various manufacturing systems are designed due to various needs and nature of activities. Considering the fact that cellular manufacturing systems have adopted reduced cost price from mass-production systems, and high flexibility from job-shop manufacturing systems, they are very popular amongst other manufacturing systems. One of the major concerns in cellular manufacturing is the layout of the machines and parts inside the cells. The Cell formation should be done in a way that all processes of manufacturing a part fit in the same cell. Accordingly, the most important objective could be reducing voids and exceptional elements. Moreover, the role of the workforce in manufacturing systems cannot be denied. 
Planning the facilities could be centralized or decentralized. In centralized planning and various sizes of facilities, manufacturing policies are designed in an integrated manner, but in decentralized cases, this activity could vary depending on the requirements and policies adopted for different facilities even in one unit. Decentralized planning has been recently taken into consideration in supply chain and production planning problems. Cell formation has been the subject of various studies for a long time, but workforce planning in this system has attracted attention in recent years. In the few studies conducted in this regard, Cell formation and workforce planning are centralized while Cell formation is a strategic decision and workforce planning is a central decision. Practically, these two sectors cannot be planned centrally, and decision making in this regard is decentralized. For the same reason, this article aims to provide a scientific and meanwhile practical solution for cell manufacturing problems in real conditions. 
2- Literature Review
Cellular manufacturing is a combination of mass-production and job-shop manufacturing. This method is based on group technology and aims to increase efficiency using similar specifications of the manufactured parts. In cellular manufacturing, a group of parts which are of similar manufacturing requirements are considered a family. The system also tends to fit all the skills and equipment required for manufacturing the products of the same family in one cell. Increasing intracellular movement increases manufactory traffic and wasted time, and consequently, imposes excessive costs to the organization. Chandrasekharan and Rajagopalan (1989) have defined a criterion named “grouping efficiency” which is a function of the number of voids and exceptional elements and has been used as the criterion for evaluating the quality of answers for a long time. Of course, the bigger part-machine matrixes are, the less would be the effect of exceptional elements in the quality of answers; this is one of the faults of this criterion. For this reason, after a while, Kumar and Chandrasekharan (1990) used a new criterion named “grouping efficacy” to describe the quality of answers. 
The cell formation problem is the core of cellular manufacturing. Machines and parts are classified based on the similarity of their design, form, and performance in order to simplify the manufacturing system and benefit from concealed advantages of similarity. Chen and Chang (1995) used the neural network algorithm to determine the cell formation. They used “adaptive resonance theory” based on the neural network in cellular manufacturing. Cheng et al. (1998) formulated the cell formation problem as the traveling salesman problem and provided a methodology based on genetic algorithms to solve this problem. Onwubolu and Mutingi (2001) provided a genetic algorithm method for determining the cell formation in cellular manufacturing systems. Goncalves and Rezende (2004) made an approach to determining product family and machine cell. This method was a combination of an innovative local algorithm and genetic algorithm. Al-Badwi et al. (2005) proposed a mathematical model of manufacturing cell formation. This approach consists of two phases. In the first phase, machine cells are determined by the coefficient of proportional similarity matrix factors. In the second phase, a mathematical model is used to allocate part of the cells. Mahdavi et al. (2009) proposed a mathematical model for the cell formation problem based on the concept of using cells in cellular manufacturing systems. This model aimed to minimize the number of voids and exceptional elements in the cells. They also designed an effective method for solving the mathematical model based on the genetic algorithm. Anvari et al. (2010) developed a particle swarm optimization algorithm to determine part families using the coefficient of proportional similarity, and determine machine group aiming to minimize voids and exceptional elements. 
Paydar et al. (2011) proposed a model for determining part families and machine groups at the same time in the cell formation problem. This model aimed to minimize exceptional elements and intracellular empty spaces at the same time. An advantage of this model is considered the number of manufacturing cells as a decision variable. Therefore, the optimum number of cells is determined by the model. Arcat et al. (2011) proposed a dual-purpose model for minimizing the number of voids and exceptional elements in the cells. They developed a multi-objective genetic algorithm for solving large-scale problems. Elbanani et al. (2012) proposed a local search method for solving the cell formation problems in which each cell contains at least one machine and one part. The proposed method successively uses resonance strategy to optimize the answer locally, and destruction strategy for deriving a new answer from the previous answer. They proved the efficiency of this method by solving 35 problems of the subject literature and comparing the answers to the best answers achieved by that time using group efficiency method. In his article, Brown (2014) tries to work out a long-term sustainable cell formation in cellular manufacturing systems with exceptional elements by developing mathematical models and cutting the total cost down through minimizing intracellular movements and the number of similar machinery. Sakhaie et al. (2016) used mixed integer programming model to study the reduction of shortage costs, costs of moving the machinery, and labor costs in a cellular manufacturing system with unreliable machinery to program the production. Deep and Singh (2015) proposed a mathematical model for minimizing manufacturing costs in dynamic cellular manufacturing systems and solved it using a genetic algorithm, considering factors like the capacity of the machinery, multiple routing, production capacity, and accessibility of the raw material. Egilmez et al. (2014) studied the issue of allocating workforce to different cells in their article. They proposed a mathematical model with a random approach for allocating the workforce to different cells based on the capabilities of the workforces.  Bootaki et al. (2016) studied about configuring manufacturing cells when product mix variation occurs. The nature of CMS in manufacturing products in mid-variety and mid-volume, the product mix variation is not too far-fetched. Product mix variation causes the part-machine incidence matrix to change. They formulated the problem with two different criteria are considered which one relates to worker experts and another to worker relations. 
Multilevel optimization problems (MLOP) have been developed for distributed planning problems in a hierarchical organization with many decision makers. The decisions are taken in a sequential way and without any cooperation. These MLOPs are characterized by a hierarchy of planners; each planner has independently controlled a subset of decision variables, disjoint from the others. A bi-level optimization problem (BOP) can be seen as a multi-level problem with two levels, upper-level or leader, and lower-level or follower problems (Talbi, 2013).
In this problem, the objectives are reducing the number of voids and exceptional elements and maximizing the workers’ interest in working in each cell. Obviously, these two objectives are not in cooperation, and therefore, must be addressed in two different parts. For this reason, it is necessary to use a bi-level solution to solve the problem. Although the first level contains cooperated objectives and can be modeled and optimized through methods such as multi-objective planning, considering what was mentioned above, the final solution of the subjected problem should be done using a bi-level planning model.
3- Decentralized Decision Making
After 1990’s and in modern management, decision making is the main function and necessary process for the manager which represented in every field (Androniceanu and Ristea, 2014). Decision making known as the thought process of choosing a logical option from the available options. The negatives and positives of each choice must be noted and all the alternatives should be observed, when trying to make a good decision. The result of each choice must be forecasted for efficient decision making, and determine, based on all these items which choice is the best for that condition. Stackelberg game theory bucked up Multilevel decision-making techniques (Stackelberg, 1952). Decentralized decision making has been developed to address compromises between the interactive decision entities that are distributed throughout a hierarchical organization (Anandalingam et al., 1992) and presented by multilevel programming models. Multilevel decision problems have newly more and more appeared in decentralized management situations in the real world. Bracken and McGill presented multilevel decision-making in a paper authored in 1973 and since 1980s a wide range of relevant research under the following designations: multilevel programming, multilevel optimization and multilevel decision-making has been undertaken (Lu et al., 2016).
Bi-level programming problems are hierarchical optimization problems with two levels, each level has its own constraints and objective functions (Dempe and Mersha, 2006). In this model decision entities at the first level and the second level are respectively named the leader and the follower. Leader and follower make their individual decisions with the goal of optimizing their relative objectives in sequence. The leader actions first, and the follower reacts to the leader's decision and it means that the leader has priority in making its own decision and the follower reacts after and in full knowledge of the leader’s decision (Borza and Rambely, 2016); however, the leader’s decision is implicitly affected by the follower’s reaction. 
The bi-level programming is used frequently by problems with decentralized planning structure. It is defined as (Bard, 1998):
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with as the feasible region of the bi-level programming problem every point such as (x*, y*) is an optimal solution problem if:
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The main objective of solving the bi-level programming problem is to find out a point of the accessible area where the value of the first level objective function is optimized on the accessible area.
For solving the bi-level programming problems, many algorithms have been presented, which categorized into the following groups: global techniques, primal–dual interior methods, enumeration methods, transformation methods, fuzzy methods and metaheuristic approaches (Hosseini and Kamalabadi, 2015). In this paper, we used Karush-Kahn-Tucker (KKT) method for solving bi-level programming problem.
4- Mathematical Model
A mathematical model is designed to achieve an optimal solution. The indices used in the mathematical model are:
i: index for part type (i=1, 2, …, P); 
w: index for worker (w=1, 2, …, W);
m: index for machine type (m=1, 2, …, M);
k: index for cell (k=1, 2, …, C).

The parameters used in the mathematical model are:
Aim = 1 if part type i needs machine type m; 0 otherwise
Bimw = 1 if part type i can be processed on machine type m with worker w; =0 otherwise
LMk = minimum size of cell k in terms of the number of machine types;
LPk = minimum size of cell k in terms of the number of part types;
LWk = minimum size of cell k in terms of the number of workers;
UWk = maximum size of cell k in terms of the number of workers;
[bookmark: _GoBack]Rww' = 1 if worker w interest to work with worker w'; =0 otherwise.

Decision variables in the model are:
xmk =1 if machine type m is assigned to cell k; =0 otherwise;
yik =1 if part i is assigned to cell k; =0 otherwise;
zwk = 1 if worker w is assigned to cell k; =0 otherwise;
dimwk=1 if part i is processed by machine type m with worker w in cell k; =0 otherwise;
According to the desired goals of the model optimization, two objective functions in two levels were considered. At the top level and leader's objective, we are looking for minimizing voids and inter cell movements.
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In this objective function the first term, i.e. (3), minimizing the total number of voids, the terms (4), (5) and (6) are to calculate the number of exceptional elements. The exceptional elements for parts is calculated based on the status, availability of corresponding worker and machine. 
The constraints are:
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In this mathematical model, equation (7) ensures that a specific part is assigned to one cell only. Inequality (8) is defined to control the assignment of minimum machines to a cell. Constraint (9) ensures that when machine type m is not in cell k, then . Equation (10) ensures that if the part i required to process by machine m, there is a cell and just one like k which contain this machine and worker w whom work on it to processing part i on this cell. Inequality (11) is defined to control the minimum number of parts which processed in each cell. Finally, equation (12) suggests that xmk, yik, zwk and dimwk are binary decision variables.  
In the follower objective as second level we are looking for maximizing interesting to work together between workers whom work in a special cell.  
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In the second level of the mathematical model, equation (13) ensures that a specific worker is assigned to one cell only. Constraints (14) and (15) are defined to control the assignment of minimum and maximum workers to a cell. Finally, equation (16) defined to ensure that if worker w assigned to cell k there is at least one part like i in this cell which processed by the machine type m by working the worker w on that machine. Inequality (17) is defined the relation of two decision variables.
The nonlinear terms in the first level objective function can be linearized with s1imwk, s2imwk, q1imwk, q2imwk and q3imwk.  
	
	


	
	


	
	


	
	


	
	



The following sets of constraints for linearization added to the model too:
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After the linearization of the objective function the first level presents as follows:


Subject to constraints (7) - (12) and (18) - (25). 
5- KKT Method and Model Reformulation  
Using the KKT conditions is one of the popular methods to solve the bi-level optimization problems. In this approach the original problem changes to its first level subsidiary problem (E.S. Lee and R.J. Li, 1993). In this way, the problem is reduced to a regular mathematical programming problem; the lower level problem replaced by its KKT conditions. However, the transformed problem or the subsidiary problem is difficult to solve due to nonlinearity, which was introduced through the supplementary slackness conditions. 
We should use KKT conditions on the follower objective function. Let u and v be the dual variables associated with two sets of constraints.
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For solving the bi-level programming problem, the second level should be replaced with these steps (Garces et al., 2009):
· Constraints of original second level;
· Constraints of dual problem of second level;
· Equality constraint of strong duality theory;
Problem (1) transforms after using KKT conditions on the lower level to the following problem:
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Before applying the KKT conditions on the second level, the non-linear term in the objective function of this level could be linearized with pww’k =zwk .zw’k under the following constraints:        
	(29)
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We now present the linear mathematical model for second level as follows: 


Subject to constraints (14) - (17) and (29) – (30)
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For the first step and before using the KKT conditions, dual of second level should be calculated. The dual model present as follows:
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The nonlinear term in equation (33) could be linearized with  under the following constraints:
	

	

	(39)

	

	

	(40)

	

	

	(41)

	

	

	(42)


M in equations (39) and (40) is a positive large number.
After using the KKT conditions for the second level and linearization of the first and the second levels, the mathematical model presented as follows:
	

	

	
	

	Subject to constraints (7) - (12), (14) - (25), (29) - (31) and (34) - (42). 
	

	




6- Case Study
Alyagkaran Manufacturing Company is a manufacturer of brake and clutch pads. Products of this company are brake shoes for agricultural machines, brake pads for heavy vehicles, disk brake pads, and industrial brake and clutch pads for industrial machinery. Five different types of machines and equipment are used to manufacture these products: hydraulic pressing machine, mixer, molding machine, rubbing machine, and furnace. These equipment are installed in two halls and totally 9 workers are operating them. Workers in each hall must be capable of performing tasks of the other workers of the same hall in emergency cases, in addition to their own tasks. Products are coded by P, machines are coded by M and indexed by numbers 1-5, and workers are coded by W and indexed by numbers 1-9. 
In order to solve the model in the case study environment, Part-Machine matrixes showing the machines needed to manufacture each part as shown in Table (1), Machine-Worker matrixes showing workers’ capability of working with various machines as shown in Table (2), and Worker-Worker matrixes showing each worker’s interest in working with other workers were completed. The worker - worker matrix is worked out based on each worker’s “yes/no” answer to this question – asked in private – as shown in Table (3). 


Table 1. Part-machine matrix 
	M5
	M4
	M3
	M2
	M1
	

	1
	0
	0
	1
	1
	P1

	1
	0
	1
	1
	0
	P2

	1
	0
	1
	1
	1
	P3

	1
	1
	0
	0
	1
	P4

	1
	1
	1
	0
	0
	P5



Table 2. Machine-worker matrix
	W9
	W8
	W7
	W6
	W5
	W4
	W3
	W2
	W1
	

	0
	1
	0
	0
	1
	1
	0
	0
	1
	M1

	0
	1
	1
	0
	1
	1
	0
	1
	1
	M2

	1
	1
	0
	0
	1
	0
	0
	0
	0
	M3

	1
	0
	1
	0
	0
	1
	1
	0
	1
	M4

	1
	0
	0
	1
	0
	0
	1
	1
	1
	M5



Table 3. Workers interest matrix
	W9
	W8
	W7
	W6
	W5
	W4
	W3
	W2
	W1
	

	1
	1
	0
	1
	0
	1
	0
	1
	1
	W1

	1
	0
	0
	1
	0
	0
	0
	1
	1
	W2

	1
	1
	0
	0
	0
	1
	1
	0
	0
	W3

	1
	0
	1
	0
	0
	1
	0
	0
	1
	W4

	0
	1
	0
	1
	1
	0
	1
	0
	1
	W5

	0
	1
	0
	1
	0
	0
	1
	0
	0
	W6

	1
	0
	1
	0
	1
	1
	0
	1
	0
	W7

	1
	1
	0
	1
	1
	0
	1
	0
	0
	W8

	1
	0
	1
	0
	1
	0
	1
	1
	1
	W9



Various methods can be used to layout machines and workers, which we will discuss later. In the first case, only the workers’ interest in working with each other has been taken into consideration. Considering the fact that the workers must be capable of performing tasks of the other workers in the same hall, it is essentially important to promote a sense of cooperation and coordination amongst them. To achieve this goal, the workers’ interest in working with each other is of a great importance; because it is not always easy to exchange knowledge between the workers, and friendly relationship between the workers of each section can facilitate solving this problem. The results of the proposed mathematical model, considering only the second level and its limitations are provided in Figure (1) and Table (4), based on which value of interest=32, the number of voids and exceptional elements equals 177. 
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Figure 1. Assignment of workers, machines, and parts in cells for the first case
Table 4. Matrix of workers’ interest after forming of the cells basis of the first case.
	
	
	Cell 1
	Cell 2

	
	
	W3
	W5
	W6
	W8
	W1
	W2
	W4
	W7
	W9

	Cell 1
	W3
	1
	0
	0
	1
	0
	0
	1
	0
	1

	
	W5
	1
	1
	1
	1
	1
	0
	0
	0
	0

	
	W6
	1
	0
	1
	1
	0
	0
	0
	0
	0

	
	W8
	1
	1
	1
	1
	0
	0
	0
	0
	1

	Cell 2
	W1
	0
	0
	1
	1
	1
	1
	1
	0
	1

	
	W2
	0
	0
	1
	0
	1
	1
	0
	0
	1

	
	W4
	0
	0
	0
	0
	1
	0
	1
	1
	1

	
	W7
	0
	1
	0
	0
	0
	1
	1
	1
	1

	
	W9
	1
	1
	0
	0
	1
	1
	0
	1
	1



It must be also noted that although the workers’ interest in working with each other is at the highest possible level, the number of voids and exceptional elements is too big and unacceptable. For the same reason, and considering the fact that in solving cellular manufacturing problems, reducing the number of voids and exceptional elements are of a high priority, in the second case only the proposed mathematical model takes into consideration. Of course, for full allocation of required workforce, limitations of the second level have been added to those of the first level. The results are shown in Figure (2).
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Figure 2. Assignment of workers, machines, and parts in cells for the second case
In this case, the best answer and the minimum number of voids and exceptional elements will be 45. Considering the limitations of the model in the first level, and also limitations of the second level which has been added to this level, the value of the workers of two halls interest in working with each other is calculated 25, as shown in Table (5). 



Table 5. Matrix of Workers’ Interest after laying out the cells basis of the Second Case.
	
	
	Cell 1
	
	Cell 2

	
	
	W3
	W5
	W9
	W1
	W2
	W4
	W6
	W7
	W8

	Cell 1
	W3
	1
	0
	1
	0
	0
	1
	0
	0
	1

	
	W5
	1
	1
	0
	1
	0
	0
	1
	0
	1

	
	W9
	1
	1
	1
	1
	1
	0
	0
	1
	0

	Cell 2
	W1
	0
	0
	1
	1
	1
	1
	1
	0
	1

	
	W2
	0
	0
	1
	1
	1
	0
	1
	0
	0

	
	W4
	0
	0
	1
	1
	0
	1
	0
	1
	0

	
	W6
	1
	0
	0
	0
	0
	0
	1
	0
	1

	
	W7
	0
	1
	1
	0
	1
	1
	0
	1
	0

	
	W8
	0
	1
	1
	0
	0
	0
	1
	0
	1
	



However, since in the modern world types of tasks and activities of staff in an organization have changed a lot, and management and exchange of knowledge are essentially important, the workers’ interest in cooperating and coordinating with each other cannot be disregarded. Considering various potential problems and circumstances, employers and managers must pay excessive attention to the workers’ capability of covering each other’s task in addition to their knowledge concerns. 
With regards to what mentioned above, it can be said that going through any of the above factors alone cannot fully solve the problem in the real world. Therefore, we have tried to use the bi-level planning method to develop the mathematical model in a way that the most optimum result, suitable for practical applications is achieved. Accordingly, we considered the more important objective to be minimizing the number of voids and exceptional elements in the first level, and promoting the workers’ interest in working with each other on the second level. Based on this, and after solving the proposed mathematical model the new layout is worked out as shown in Figure (3). 
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Fig 3. Assignment of workers, machines, and parts of the cells after solving the bi-level mathematical model

In the new layout, the number of voids and exceptional elements equals 49 as shown in the above figure, and value of the workers’ interest in working with each other equals 29 as shown in Table (6). 


Table 6. A matrix of Workers’ interest after laying out the cells basis of the fully solved mathematical model
	
	
	Cell 1
	
	Cell 2

	
	
	W1
	W2
	W4
	W3
	W5
	W6
	W7
	W8
	W9

	Cell 1
	W1
	1
	1
	1
	0
	0
	1
	0
	1
	1

	
	W2
	1
	1
	0
	0
	0
	0
	0
	1
	1

	
	W4
	1
	0
	1
	0
	0
	0
	1
	0
	1

	Cell 2
	W3
	0
	0
	1
	1
	0
	0
	0
	1
	1

	
	W5
	1
	0
	0
	1
	1
	1
	0
	1
	0

	
	W6
	0
	0
	0
	1
	0
	1
	0
	1
	0

	
	W7
	0
	0
	1
	0
	1
	0
	1
	0
	1

	
	W8
	0
	1
	0
	1
	1
	1
	0
	1
	1

	
	W9
	1
	0
	0
	1
	1
	0
	1
	0
	1
	



Therefore, although every single objective is far from its optimum value, considering decentralized decision making and necessity of progressing both objectives mutually in the field of manufacturing, and also priorities set forth in this regard, the values are calculated in a way that both the employer’s requirements are met mutually and at a proper level.
For the mathematical model solving, LINGO 16 software used on a computer with the hardware and software specifications which shown as follows:
HP ProLiant DL380 Gen9 Server 
CPU: Intel XEON E5-2600 2.60 GHz, 2 processors with 58 cores total.
Installed memory (RAM): 96 GB DDR4
Operating system: Microsoft Windows Server 2012 R2 (64 Bits).
Run times for three noted situations of the case study are shown in Table 7.
Table 7. Run times for each situation of the mathematical model.
	Situation #
	Description
	Run Time (hh: mm: ss)

	1
	Second Level (Follower Function)
	00:00:01

	2
	First Level (Leader Function)
	88:58:20

	3
	The Fully Bi-Level Model 
	97:29:03



7- Conclusions
 As mentioned before, cellular manufacturing problems aim to achieve the best layout for the facilities. Planning facilities can be centralized or decentralized. In centralized planning and various sizes of facilities, manufacturing policies is designed in an integrated manner; but in decentralized cases, this activity could vary depending on the requirements and policies adopted for different facilities even in one unit. Considering the current dynamic and constantly changing business environment, the organizations have to adapt themselves to the changes of the environment and seek innovation and competitive advantages for survival. In order to have an innovative and dynamic organization, it is necessary to promote the sense of cooperation and coordination between the workforces because the cooperation of the workforces results in a more effective and realistic exchange of knowledge and consecutively optimizes the group performance. Therefore, workforce planning in cellular manufacturing must focus on promoting learning interactions between the staff. 
Cell formation is a strategic decision and workforce planning is a tactical decision. Practically, these two aspects cannot be planned centrally, and decision making in this regard is decentralized. For this reason, and aiming to make a decentralized and yet integrated decision, a bi-level approach has been provided in this article. The first level addresses the more important issue, which is reducing the number of voids and exceptional elements, and in the second level, promoting a sense of cooperation between the workers has been taken into consideration in order to maintain an innovative and dynamic organization in the long term. Based on the proposed bi-level mathematical model, machinery and workforces are laid out in a way that the sense of cooperation between the workforces is increased proportion to the decrease in the number of voids and exceptional elements. This way, instead of applying one-aspect approaches to solving two different and non-aligned problems, a series of optimum answers are worked out, which direct the organization towards realizing both of its objectives.
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