جلد 28، شماره 2 - ( 3-1396 )                   جلد 28 شماره 2 صفحات 151-161 | برگشت به فهرست نسخه ها



DOI: 10.22068/ijiepr.28.2.151

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Babazadeh R, Tavakkoli-Moghaddam R. A hybrid GA-TLBO algorithm for optimizing a capacitated three-stage supply chain network . IJIEPR. 2017; 28 (2) :151-161
URL: http://ijiepr.iust.ac.ir/article-1-725-fa.html
A hybrid GA-TLBO algorithm for optimizing a capacitated three-stage supply chain network . نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1396; 28 (2) :151-161

URL: http://ijiepr.iust.ac.ir/article-1-725-fa.html


چکیده:   (332 مشاهده)

A teaching-learning-based optimization (TLBO) algorithm is a new population-based algorithm applied in some applications in the literature successfully. Moreover, a genetic algorithm (GA) is a popular tool employed widely in many disciplines of engineering. In this paper, a hybrid GA-TLBO algorithm is proposed for the capacitated three-stage supply chain network design (SCND) problem. The SCND problem as a strategic level decision-making problem in supply chain management is an NP-hard class of computational complexity. To escape infeasible solutions emerged in the problem of interest due to realistic constraints, combination of a random key and priority-base encoding scheme is also used. To assess the quality of the proposed hybrid GA-TLBO algorithm, some numerical examples are conducted. Then, the results are compared with the GA, TLBO, differential evolution (DE) and branch-and -bound algorithms. Finally, the conclusion is provided.

متن کامل [PDF 784 kb]   (116 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: زنجیره تامین و لجستیک
دریافت: ۱۳۹۵/۱۲/۲۱ | پذیرش: ۱۳۹۶/۴/۲۴ | انتشار: ۱۳۹۶/۴/۲۴

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
کد امنیتی را در کادر بنویسید

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb