جلد 23، شماره 4 - ( 8-1391 )                   جلد 23 شماره 4 صفحات 245-251 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fazel Zarandi M, Zarinbal M. Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach. IJIEPR. 2012; 23 (4) :245-251
URL: http://ijiepr.iust.ac.ir/article-1-454-fa.html
Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1391; 23 (4) :245-251

URL: http://ijiepr.iust.ac.ir/article-1-454-fa.html


چکیده:   (2816 مشاهده)
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-2 fuzzy clustering is the most preferred method. In recent years, neurology and neuroscience have been significantly advanced by imaging tools, which typically involve vast amount of data and many uncertainties. Therefore, Type-2 fuzzy clustering methods could process these images more efficient and could provide better performance. The focus of this paper is to segment the brain Magnetic Resonance Imaging (MRI) in to essential clusters based on Type-2 Possibilistic C-Mean (PCM) method. The results show that using Type-2 PCM method provides better results.
متن کامل [PDF 468 kb]   (2121 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سیستم های هوشمند
دریافت: ۱۳۹۱/۴/۱۲ | پذیرش: ۱۳۹۳/۴/۳۰ | انتشار: ۱۳۹۳/۴/۳۰

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
کد امنیتی را در کادر بنویسید

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb