جلد 23، شماره 3 - ( 6-1391 )                   جلد 23 شماره 3 صفحات 231-243 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ranjbar M. A hybrid GRASP algorithm for minimizing total weighted resource tardiness penalty costs in scheduling of project networks. IJIEPR. 2012; 23 (3) :231-243
URL: http://ijiepr.iust.ac.ir/article-1-313-fa.html
A hybrid GRASP algorithm for minimizing total weighted resource tardiness penalty costs in scheduling of project networks. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1391; 23 (3) :231-243

URL: http://ijiepr.iust.ac.ir/article-1-313-fa.html


چکیده:   (3329 مشاهده)
In this paper, we consider scheduling of project networks under minimization of total weighted resource tardiness penalty costs. In this problem, we assume constrained resources are renewable and limited to very costly machines and tools which are also used in other projects and are not accessible in all periods of time of a project. In other words, there is a dictated ready date as well as a due date for each resource such that no resource can be available before its ready date but the resources are allowed to be used after their due dates by paying penalty cost depending on the resource type. We also assume, there is only one unit of each resource type available and no activity needs more than it for execution. The goal is to find a schedule with minimal total weighted resource tardiness penalty costs. For this purpose, we present a hybrid metaheuristic procedure based on the greedy randomized adaptive search algorithm and path-relinking algorithm. We develop reactive and non-reactive versions of the algorithm. Also, we use different bias probability functions to make our solution procedure more efficient. The computational experiments show the reactive version of the algorithm outperforms the non-reactive version. Moreover, the bias probability functions defined based on the duration and precedence relation characteristics give better results than other bias probability functions.
متن کامل [DOC 1643 kb]   (1577 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: کنترل پروژه
دریافت: ۱۳۹۰/۷/۶ | پذیرش: ۱۳۹۳/۴/۳۰ | انتشار: ۱۳۹۳/۴/۳۰

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
کد امنیتی را در کادر بنویسید

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb