جلد 22، شماره 1 - ( 12-1389 )                   جلد 22 شماره 1 صفحات 43-50 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi H, Zolfaghari M, Heydarizade M. Estimation of Electricity Demand in Residential Sector Using Genetic Algorithm Approach. IJIEPR. 2011; 22 (1) :43-50
URL: http://ijiepr.iust.ac.ir/article-1-273-fa.html
Estimation of Electricity Demand in Residential Sector Using Genetic Algorithm Approach. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1389; 22 (1) :43-50

URL: http://ijiepr.iust.ac.ir/article-1-273-fa.html


چکیده:   (3867 مشاهده)

  This paper aimed at estimation of the per capita consumption of electricity in residential sector based on economic indicators in Iran. The Genetic Algorithm Electricity Demand Model (GAEDM) was developed based on the past data using the genetic algorithm approach (GAA). The economic indicators used during the model development include: gross domestic product (GDP) in terms of per capita and real price of electricity and natural gas in residential sector. Three forms of GAEDM were developed to estimate the electricity demand. The developed models were validated with actual data, and the best estimated model was selected on base of evaluation criteria. The results showed that the exponential form had more precision to estimate the electricity demand than two other models. Finally, the future estimation of electricity demand was projected between 2009 and 2025 by three forms of the equations linear, quadratic and exponential under different scenarios .

     
نوع مطالعه: پژوهشي | موضوع مقاله: و موضوعات مربوط
دریافت: ۱۳۹۰/۴/۵

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
کد امنیتی را در کادر بنویسید

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb