

NORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS

Mehdi Alaeiyan

Abstract: We call a Cayley graph $\Gamma = \text{Cay}(G, S)$ normal for G , if the right regular representation $R(G)$ of G is normal in the full automorphism group of $\text{Aut}(\Gamma)$. In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.

Keywords: Cayley graph, normal Cayley graph, automorphism group.

1. Introduction

Let G be a finite group, and S be a subset of G not containing the identity element 1_G . The Cayley digraph $\Gamma = \text{Cay}(G, S)$ of G relative to S is defined as the graph with vertex set $V(\Gamma) = G$ and edge set $E(\Gamma)$ consisting of those ordered pairs (x, y) from G for which $yx^{-1} \in S$. Immediately from the definition we find that, there are three obvious facts: (1) $\text{Aut}(\Gamma)$ contains the right regular representation $R(G)$ of G and so Γ is vertex-transitive.

(2) Γ is connected if and only if $G = \langle S \rangle$. (3) Γ is an undirected if and only if $S^{-1} = S$.

A Cayley (di)graph $\Gamma = \text{Cay}(G, S)$ is called normal if the right regular representation $R(G)$ of G is a normal subgroup of the automorphism group of Γ .

The concept of normality of Cayley (di)graphs is known to be important for the study of arc-transitive graphs and half-transitive graphs (see [1,2]). Given a finite group G , a natural problem is to determine all normal or non-normal Cayley (di)graphs of G . This problem is very difficult and is solved only for the cyclic groups of prime order by Alspach [3] and the groups of order twice a prime by Du et al. [4], while some partial answers for other groups to this problem can be found in [5-8]. Wang et al. [8] characterized all normal disconnected Cayley's graphs of finite groups. Therefore the main work to determine the normality of Cayley graphs is to determine the normality of connected Cayley graphs. In [5, 6], all non-normal Cayley graphs of abelian groups with valency at most 5 were classified. The purpose of this paper is the following main theorem.

Theorem 1.1 Let $\Gamma = \text{Cay}(G, S)$ be a connected undirected Cayley graph of a finite abelian group G on S with valency 6. Then Γ is normal except when one of the following cases happens:

Paper first received March. 2, 2007, and in revised form Jan.10, 2007.

M Alaeiyan, Department of Mathematics, Iran University of Science and Technology, alaeiyan@iust.ac.ir

$$(1): G = \mathbb{Z}_2^5 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle \times \langle e \rangle, \\ S = \{a, b, c, abc, d, e\}.$$

$$(2): G = \mathbb{Z}_2^3 \times \mathbb{Z}_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle \quad (m \geq 3), \\ S = \{a, b, c, abc, d, d^{-1}\}.$$

$$(3): G = \mathbb{Z}_2^2 \times \mathbb{Z}_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle, \\ S = \{a, b, ab, c^2, c, c^{-1}\}.$$

$$(4): G = \mathbb{Z}_2^4 \times \mathbb{Z}_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle \times \langle e \rangle, \\ S = \{a, b, c, d, e, e^{-1}\}.$$

$$(5): G = \mathbb{Z}_2^3 \times \mathbb{Z}_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle \\ S_1 = \{a, b, c, d^2, d, d^{-1}\}, \\ S_2 = \{a, b, ab, c, d, d^{-1}\}, S_3 = \{a, b, c, ad^2, d, d^{-1}\}.$$

$$(6): G = \mathbb{Z}_2^2 \times \mathbb{Z}_6 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle, \\ S = \{a, b, ab, c^3, c, c^{-1}\}.$$

$$(7): G = \mathbb{Z}_2^3 \times \mathbb{Z}_6 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle, \\ S = \{a, b, c, d^3, d, d^{-1}\}.$$

$$(8): G = \mathbb{Z}_6 \times \mathbb{Z}_{2m} = \langle a \rangle \times \langle b \rangle \quad (m \geq 2), \\ S = \{a^3, b^m, a, a^{-1}, b, b^{-1}\}.$$

$$(9): G = \mathbb{Z}_2 \times \mathbb{Z}_6 \times \mathbb{Z}_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \quad (m \geq 3), \\ S = \{a, b^3, b, b^{-1}, c, c^{-1}\}.$$

$$(10): G = \mathbb{Z}_4 \times \mathbb{Z}_{2m} = \langle a \rangle \times \langle b \rangle \quad (m \geq 2), \\ S = \{a, a^{-1}, a^2, b, b^{-1}, b^m\}.$$

$$(11): G = \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \quad (m \geq 3), \\ S_1 = \{a, b, b^{-1}, b^2, c, c^{-1}\}, S_2 = \{a, b, b^{-1}, ab^2, c, c^{-1}\}.$$

$$(12): G = \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \quad (m \geq 2), \\ S = \{a, b, b^{-1}, c, c^{-1}, c^m\}.$$

$$(13): G = \mathbb{Z}_2^2 \times \mathbb{Z}_4 \times \mathbb{Z}_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle \\ (m \geq 3), S = \{a, b, c, c^{-1}, d, d^{-1}\}.$$

(14): $G = Z_2^3 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$ ($m \geq 3$),
 $S = \{a, b, cd, cd^{-1}, d, d^{-1}\}$.

(15): $G = Z_2^2 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m = 5, 10$),
 $S = \{a, b, c, c^{-1}, c^3, c^{-3}\}$.

(16): $G = Z_2^2 \times Z_{4m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 2$),
 $S = \{a, b, c, c^{-1}, c^{2m+1}, c^{2m-1}\}$.

(17): $G = Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ ($m \geq 3$, m is odd),
 $S = \{a, a^3, b, b^{-1}, b^{m+1}, b^{m-1}\}$.

(18): $G = Z_4^2 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 3$),
 $S = \{a, a^3, b, b^3, c, c^{-1}\}$.

(19): $G = Z_{4m} \times Z_n = \langle a \rangle \times \langle b \rangle$ ($m \geq 2, n \geq 3$),
 $S = \{a, a^{-1}, a^{2m+1}, a^{2m-1}, b, b^{-1}\}$.

(20): $G = Z_2 \times Z_m \times Z_n = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 3, n \geq 3$),
 $S = \{ab, a b^{-1}, b, b^{-1}, c, c^{-1}\}$.

(21): $G = Z_m \times Z_n = \langle a \rangle \times \langle b \rangle$ ($m = 5, 10, n \geq 3$),
 $S = \{a, a^{-1}, a^3, a^{-3}, b, b^{-1}\}$.

(22): $G = Z_2^4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$,
 $S = \{a, b, ab, c, abc, d\}$.

(23): $G = Z_2^2 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$,
 $S = \{a, b, ac^2, c, c^{-1}, c^2\}$.

(24): $G = Z_2^3 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$,
 $S = \{a, b, c, d, d^{-1}, abd^2\}$.

(25): $G = Z_2^2 \times Z_{3m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 1$),
 $S = \{a, b, ac^m, ac^{2m}, c, c^{-1}\}$.

(26): $G = Z_2 \times Z_{10} = \langle a \rangle \times \langle b \rangle$, $S = \{a, b, b^3, b^5, b^7, b^9\}$.

(27): $G = Z_2^2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 2$),
 $S = \{ac, ac^{-1}, b, c^m, c, c^{-1}\}$.

(28): $G = Z_2 \times Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 2$),
 $S = \{a, b^2c^m, b, b^{-1}, c, c^{-1}\}$.

(29): $G = Z_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ ($m \geq 3$),
 $S = \{a, b^m, b, b^{-1}, b^{m+1}, b^{m-1}\}$.

(30): $G = Z_2^2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 2$),
 $S = \{a, b, ac, ac^{-1}, c, c^{-1}\}$.

(31): $G = Z_2 \times Z_{6m} = \langle a \rangle \times \langle b \rangle$ ($m \geq 3$, m is odd),
 $S = \{a, b^2, b^{-2}, b^m, b^{5m}, b^{3m}\}$.

(32): $G = Z_2^2 \times Z_{6m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 2$),
 $S = \{a, bc^m, bc^{3m}, bc^{5m}, c, c^{-1}\}$.

(33): $G = Z_2^3 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, $S = \{a, b, c, ab, ac, abc\}$.

(34): $G = Z_2^4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$,
 $S = \{a, b, c, d, abc, abd\}$.

(35): $G = Z_2^2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 2$),
 $S = \{a, b, ac^m, bc^m, c, c^{-1}\}$.

(36): $G = Z_2^2 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$,
 $S_1 = \{a, b, ab, ac^2, c, c^{-1}\}$,
 $S_2 = \{a, b, ac^2, abc^2, c, c^{-1}\}$.

(37): $G = Z_2^3 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$,
 $S = \{a, b, c, abcd^2, d, d^{-1}\}$.

(38): $G = Z_2 \times Z_{6m} = \langle a \rangle \times \langle b \rangle$ ($m \geq 2$),
 $S = \{a, b^{3m}, ab^{2m}, ab^{4m}, b, b^{-1}\}$.

(39): $G = Z_2 \times Z_{4m} = \langle a \rangle \times \langle b \rangle$ ($m \geq 1$),
 $S = \{a, ab^m, ab^{2m}, ab^{3m}, b, b^{-1}\}$.

(40): $G = Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ ($m \geq 2$),
 $S = \{a, a^{-1}, b^m, a^2b^m, b, b^{-1}\}$.

(41): $G = Z_2^2 \times Z_{4m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 1$),
 $S = \{a, ac^{2m}, bc^m, bc^{3m}, c, c^{-1}\}$.

(42): $G = Z_2 \times Z_{10} = \langle a \rangle \times \langle b \rangle$,
 $S = \{a, ab^5, b, b^9, b^3, b^7\}$.

(43): $G = Z_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$,
 $S_1 = \{a, b, b^{-1}, b^m, ab, a b^{-1}\}$, $m \geq 2$,
 $S_2 = \{a, ab^m, b, b^{-1}, ab, a b^{-1}\}$, $m \geq 2$,
 $S_3 = \{ab^m, b^m, b, b^{-1}, ab, a b^{-1}\}$, $m \geq 2$, $S_4 = \{a, ab^m, b, b^{-1}, b^{m+1}, b^{m-1}\}$,
 $m \geq 3$, $S_5 = \{a, b, b^{-1}, b^m, ab^{m+1}, ab^{m-1}\}$, $m \geq 3$, $S_6 = \{a, ab^m, b, b^{-1}, ab^{m+1}, ab^{m-1}\}$, $m \geq 3$,
 $S_7 = \{ab^m, b, b^{-1}, b^m, ab^{m+1}, ab^{m-1}\}$, $m \geq 3$

(44): $G = Z_2^2 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, $S_1 = \{a, b, c, c^{-1}, abc, abc^{-1}\}$, $m \geq 3$, $S_2 = \{a, b, c, c^{-1}, ac^{k+1}, ac^{k-1}\}$, $m = 2k$, $k \geq 3$, $S_3 = \{a, b, c, c^{-1}, abc^{k+1}, abc^{k-1}\}$, $m = 2k$, $k \geq 3$, $S_4 = \{a, bc, b c^{-1}, ack, c, c^{-1}\}$, $m = 2k$, $k \geq 2$, $S_5 = \{a, bc^{k+1}, bc^{k-1}, c^k, c, c^{-1}\}$, $m = 2k$, $k \geq 3$, $S_6 = \{a, bc^{k+1}, bc^{k-1}, ac^k, c, c^{-1}\}$, $m = 2k$, $k \geq 3$, $S_7 = \{a, b, c, c^{-1}, ac, ac^{-1}\}$, $m = 2k - 1$, $k \geq 2$.

(45): $G = Z_{4m} = \langle a \rangle$ ($m \geq 2$),
 $S = \{a, a^{-1}, a^m, a^{-m}, a^{2m+1}, a^{2m-1}\}$.

(46): $G = Z_{2m} = \langle a \rangle$ ($m \geq 4$),
 $S = \{a, a^{-1}, a^{m+1}, a^{m-1}, a^k, a^{-k}\}$ ($2 \leq k \leq m - 2$),
 $(m, k) = 1$, if $l > 2$ or $l = 2$ for $m = 4i + 2$; ($k = 2i$, with i odd or $k = 2i + 2$, with i even).

(47): $G = Z_2 \times Z_m = \langle a \rangle \times \langle b \rangle$ ($m \geq 5$),
 $S_1 = \{ab, ab^{-1}, b, b^{-1}, b^j, b^{-j}\}$ ($2 \leq j < \frac{m}{2}$), $(m, j) = p > 2$; $m = (t + 1)p$,

$S_2 = \{ab, ab^{-1}, b, b^{-1}, ab^j, ab^{-j}\}$, $(2 \leq j < \frac{m}{2})$, $(m, j) = p > 2$; $m = (t+1)p$.

(48): $G = Z_2 \times Z_8 = \langle a \rangle \times \langle b \rangle$,
 $S_1 = \{ab, ab^{-1}, b, b^{-1}, b^3, b^{-3}\}$,
 $S_2 = \{ab, ab^{-1}, b, b^{-1}, ab^3, ab^{-3}\}$.

(49): $G = Z_{2m} \times Z_n = \langle a \rangle \times \langle b \rangle$ ($m \geq 2, n \geq 3$),
 $S = \{a, a^{-1}, a^m b, a^m b^{-1}, b, b^{-1}\}$.

(50): $G = Z_{2m} \times Z_{2n} = \langle a \rangle \times \langle b \rangle$ ($m \geq 3, n \geq 2$),
 $S = \{a, a^{-1}, a^{m+1} b^n, a^{m-1} b^n, b, b^{-1}\}$.

(51): $G = Z_{6m} = \langle a \rangle$ ($m \geq 2$), $S_1 = \{a, a^{-1}, a^3, a^{-3}, a^{3m+1}, a^{3m-1}\}$,
 $S_2 = \{a, a^{-1}, a^{3m+1}, a^{3m-1}, a^{3m+3}, a^{3m-3}\}$.

(52): $G = Z_m = \langle a \rangle$ ($m = 7, 14$), $S = \{a, a^{-1}, a^3, a^{-3}, a^5, a^{-5}\}$.

(53): $G = Z_{3m} = \langle a \rangle$ ($m \geq 3$),
 $S = \{a, a^{-1}, a^{m-1}, a^{m+1}, a^{2m-1}, a^{2m+1}\}$.

(54): $G = Z_{16m+4} = \langle a \rangle$ ($m \geq 1$),
 $S = \{a, a^{-1}, a^{4m+2}, a^{12m-2}, a^{8m-3}, a^{8m-1}\}$.

(55): $G = Z_{16m+4} = \langle a \rangle$ ($m \geq 1$),
 $S = \{a, a^{-1}, a^{4m+2}, a^{12m+2}, a^{8m+1}, a^{8m+3}\}$.

(56): $G = Z_3 \times Z_3 = \langle a \rangle \times \langle b \rangle$,
 $S = \{a, a^2, b, b^2, a^2 b, a b^2\}$.

(57): $G = Z_2 \times Z_4 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$,
 $S = \{a, b, b^{-1}, c, c^{-1}, a b^2 c^2\}$.

2. Primary Analysis

Proposition 2.1 [9, Proposition 1.5] Let $\Gamma = \text{Cay}(G, S)$ be a Cayley graph of G over S , and $A = \text{Aut}(\Gamma)$. Let A_1 be the stabilizer of the identity element 1 in A .

Then Γ is normal if and only if every element of A_1 is an automorphism of G .

Proposition 2.2 [6, Theorem 1.1] Let G be a finite abelian group and S be a generating subset of $G - 1_G$. Assume S satisfies the condition that, if $s, t, u, v \in S$ with $1 \neq st = uv$, implies $\{s, t\} = \{u, v\}$. Then the Cayley graph $\text{Cay}(G, S)$ is normal.

Let X and Y be two graphs. The direct product $X \times Y$ is defined as the graph with vertex set $V(X \times Y) = V(X) \times V(Y)$ such that for any two vertices $u = [x_1, y_1]$ and $v = [x_2, y_2]$ in $V(X \times Y)$, $[u, v]$ is an edge in $X \times Y$, whenever $x_1 = x_2$ and $[y_1, y_2] \in E(Y)$ or $y_1 = y_2$ and $[x_1, x_2] \in E(X)$. Two graphs are called relatively prime if they have no nontrivial common direct factor. The lexicographic product $X[Y]$ is defined as the graph vertex set $V(X[Y]) = V(X) \times V(Y)$ such that for any two vertices $u = [x_1, y_1]$ and $v = [x_2, y_2]$ in $V(X[Y])$, $[u, v]$ is an edge in $X[Y]$ whenever $[x_1, x_2] \in E(X)$ or $x_1 = x_2$ and $[y_1, y_2] \in E(Y)$.

Let $V(Y) = \{y_1, y_2, \dots, y_n\}$. Then there is a natural embedding nX in $X[Y]$, where for $1 \leq i \leq n$, the i th copy of X is the subgraph induced on the vertex subset $\{(x, y_i) | x \in V(X)\}$ in $X[Y]$. The deleted lexicographic product $X[Y] - nX$ is the graph obtained by deleting all the edges of (this natural embedding of) nX from $X[Y]$. Let Γ be a graph and α a permutation $V(\Gamma)$ and C_n a circuit of length n . The twisted product $\Gamma \times_{\alpha} C_n$ of Γ by C_n with respect to α is defined by;

$$V(\Gamma \times_{\alpha} C_n) = V(\Gamma) \times V(C_n) = \{(x, i) | x \in V(\Gamma), i = 0, 1, \dots, n-1\},$$

$$E(\Gamma \times_{\alpha} C_n) = \{[(x, i), (x, i+1)] | x \in V(\Gamma), i = 0, 1, \dots, n-2\} \cup \{[(x, n-1), (x^{\alpha}, 0)] | x \in V(\Gamma)\} \cup \{[(x, i), (y, i)] | [x, y] \in E(\Gamma), i = 0, 1, \dots, n-1\}.$$

The graph Q_4^d denotes the graph obtained by connecting all long diagonals of 4-cube Q_4 , that is, connecting all vertices u and v in Q_4 such that $d(u, v) = 4$. The graph $K_{m,m} \times_c C_n$ is the twisted product of $K_{m,m}$ by C_n such that c is a cycle permutation on each part of the complete bipartite graph $K_{m,m}$. The graph $Q_3 \times_d C_n$ is the twisted product of Q_3 by C_n such that d transposes each pair of elements on long diagonals of Q_3 .

The graph $C_{2m}^d[2K_1]$ is defined by:

$$V(C_{2m}^d[2K_1]) = V(C_{2m}[2K_1]),$$

$$E(C_{2m}^d[2K_1]) = E(C_{2m}[2K_1]) \cup \{[(x_i, y_j), (x_{i+m}, y_j)] | i = 0, 1, \dots, m-1, j = 1, 2\}, \text{ where } V(C_{2m}) = \{x_0, x_1, \dots, x_{2m-1}\} \text{ and } V(2K_1) = \{y_1, y_2\}.$$

Let $G = G_1 \times G_2$ be the direct product of two finite groups G_1 and G_2 , let S_1 and S_2 be subsets of G_1 and G_2 , respectively, and let $S = S_1 \cup S_2$ be the disjoint union of two subsets S_1 and S_2 . Then we have,

Lemma 2.3

- (1) $\text{Cay}(G, S) \cong \text{Cay}(G_1, S_1) \times \text{Cay}(G_2, S_2)$.
- (2) If $\text{Cay}(G, S)$ is normal, then $\text{Cay}(G_1, S_1)$ is also normal.
- (3) If both of $\text{Cay}(G_1, S_1)$ and $\text{Cay}(G_2, S_2)$ are normal and relatively prime, then $\text{Cay}(G, S)$ is normal.

3. Proof of the Main Theorem

In this section, Γ always denotes the Cayley graph $\text{Cay}(G, S)$ of an abelian group G on S with valency 6. Let $A = \text{Aut}(\Gamma)$. Then A_1 and A_1^* denote the stabilizer of 1 in A and the subgroup of A which fixes $\{1\} \cup S$, pointwise, respectively. In order to prove Theorem 1.1 we need several lemmas.

Lemma 3.1 Let $G = Z_{2m} = \langle a \rangle$, ($m \geq 5$), and $S = \{a^i, a^{-i}, a^{m+i}, a^{m-i}, a, a^{-1}\}$, $2 \leq i < \frac{m}{2}$. Then $\Gamma = \text{Cay}(G, S)$ is normal.

(30): $G = Z_2 \times Z_{2n+1} \times Z_{2m+1} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m, n \geq 1$),
 $S = \{ab^m c^{n+1}, ab^{m+1} c^n, b, b^{-1}, c, c^{-1}\}$.

(31): $G = Z_{4m} = \langle a \rangle$ ($m \geq 2$),
 $S = \{a, a^{-1}, a^k, a^{-k}, a^m, a^{-m}\}$, ($1 < k < 2m$, $k \neq m$, $2m-1$).

(32): $G = Z_4 \times Z_m = \langle a \rangle \times \langle b \rangle$ ($m \geq 3$),

$S = \{a, a^{-1}, b, b^{-1}, ab^j, a^{-1}b^{-j}\}$, $1 \leq j \leq \left\lfloor \frac{m}{2} \right\rfloor$,

(When $m \neq 2k$ for every j or $m = 2k$, $j \neq k$).

(33): $G = Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ ($m \geq 2$),

$S = \{a, a^{-1}, b, b^{-1}, a^{2j}, a^{2b^{-j}}\}$ $1 \leq j < m$
(for every $j \neq 1, m-1$).

(34): $G = Z_4 \times Z_{2m-1} = \langle a \rangle \times \langle b \rangle$ ($m \geq 2$),

$S = \{a, a^{-1}, b, b^{-1}, a^{2b^j}, a^{2b^{-j}}\}$ ($1 < j < \frac{2m-1}{2}$).

(35): $G = Z_4 \times Z_m = \langle a \rangle \times \langle b \rangle$ ($m \geq 5$),

$S = \{a, a^{-1}, b, b^{-1}, b^j, b^{-j}\}$ ($1 < j < \frac{m}{2}$),

when $m \neq 2k, 5$ or $m = 2k$ ($k \geq 3$, $k \neq 5$), $j \neq k-1$ or $m = 10$, $j \neq 3$.

(36): $G = Z_{2m} = \langle a \rangle$ ($m \geq 4$),

$S = \{a, a^{-1}, a^j, a^{-j}, a^{m+1}, a^{m-1}\}$ ($2 \leq j \leq m-2$),
when $(m, j) = 1$ or $(m, j) = 2, m \neq 4i+2$ ($i \geq 1$).

(37): $G = Z_2 \times Z_m = \langle a \rangle \times \langle b \rangle$ ($m \geq 5, m \neq 8$),

$S_1 = \{ab, ab^{-1}, b, b^{-1}, b^j, b^{-j}\}$,

$S_2 = \{ab, ab^{-1}, b, b^{-1}, ab^j, ab^{-j}\}$ ($2 \leq j < \frac{m}{2}$), when

$(m, j) = p \leq 2$.

(38): $G = Z_2 \times Z_8 = \langle a \rangle \times \langle b \rangle$,

$S_1 = \{ab, ab^7, b, b^7, b^2, b^6\}$,

$S_2 = \{ab, ab^7, b, b^7, ab^2, ab^6\}$.

(39): $G = Z_m = \langle a \rangle$ ($m \geq 9, m \neq 14$),

$S = \{a, a^{-1}, a^3, a^{-3}, a^j, a^{-j}\}$ $j \neq 3, 2 \leq j < \frac{m}{2}$ when

$m \neq 6k, \forall j$ or $m = 6k, j \neq 3k-1$.

(40): $G = Z_{14} = \langle a \rangle$,

$S = \{a, a^{-1}, a^3, a^{-3}, a^j, a^{-j}\}$ for $j = 2, 4, 6$.

(41): $G = Z_m = \langle a \rangle$ ($m \geq 7$),

$S = \{a, a^{-1}, a^{3j}, a^{-3j}, a^j, a^{-j}\}$, ($2 \leq j < \frac{m}{2}$), $3j \neq 0, 1$,

$m-1, j, m-j, \frac{m}{2}$ ($\text{mod } m$)), when $m \neq 7, 14, 6k$

($k \geq 2$) and $m = 7$; $j = 2$ or $m = 14$; $j = 2, 3, 4, 6$ or $m = 6k$; $j \neq 3k-1$.

(42): $G = Z_m = \langle a \rangle$ ($m \geq 8, m \neq 14$),

$S = \{a, a^{-1}, a^{2+j}, a^{-2-j}, a^j, a^{-j}\}$ (if $m = 2k$ then $2 \leq j \leq \frac{m}{2}-3$ and if $m = 2k+1$ then $2 \leq j \leq \frac{m}{2}-1$). When $m \neq$

$3k$ for every j and when $m = 3k$, for k odd; $j \neq k-1$ and for k even; $j \neq k-1, \frac{3k}{2}-3$.

(43): $G = Z_{14} = \langle a \rangle$,
 $S = \{a, a^{-1}, a^{2+j}, a^{-2-j}, a^j, a^{-j}\}$ for $j = 2, 4$.

(44): $G = Z_2 \times Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 3$),
 $S = \{a, ab^2 c^m, b, b^{-1}, c, c^{-1}\}$.

Now we are in a position to prove Theorem 1.1. Immediately from Lemma 2.3, [5, Theorem 1.1] and [6, Theorem 1.2], we have the Cases (1)-(32) of Theorem 1.1. Assume that Γ is not normal. In view of Proposition 2.2, we have the following assumption: $\exists s, t, u, v \in S$ such that $st = ub \neq 1$ but $\{s, t\} \neq \{u, v\}$. (*).

We divide S into four cases:

Case 1: $S = \{a, b, c, d, e, f\}$, where a, b, c, d, e, f are involutions. In this case G is an elementary abelian 2-group and a, b, c, d, e, f are not independent by the assumption (*). Consequently $G = Z_2^3$ or $G = Z_2^4$ or $G = Z_2^5$. If $G = Z_2^3 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ by the assumption (*) we can let $S = \{a, b, c, ab, ac, abc\}$. We have $\sigma = (a, abc) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; and by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (33) of Theorem 1.1. If $G = Z_4^2 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$ by the assumption (*) we see that S is one of the following cases:

- (i) $S_1 = \{a, b, c, d, abc, abd\}$,
- (ii) $S_2 = \{a, b, c, d, ab, abc\}$,
- (iii) $S_3 = \{a, b, c, d, abc, abc\}$.

When $S = S_1$, $\sigma = (a, b) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (34) of Theorem 1.1. When $S = S_2$, we have the Case (22) of the main theorem. Also when $S = S_3$, Γ is normal by Lemma 3.3. If $G = Z_2^5 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle \times \langle e \rangle$ we can let $S = \{a, b, c, d, e, abc\}$ and hence $\Gamma = \text{Cay}(G, S)$ is non-normal, the Case (1) of Theorem 1.1.

Case 2: $S = \{a, b, c, d, e, e^{-1}\}$, where a, b, c, d are involutions but e is not. In this case, $S^2 - 1 = \{ab, ac, ad, ae, ae^{-1}, bc, bd, be, be^{-1}, cd, ce, ce^{-1}, de, de^{-1}, e^2, e^{-2}\}$. By the assumption (*) $d = abc$, $o(e) = 4$ or $d = e^3$. Suppose $d = abc$. Then $G = Z_2^2 \times Z_{2m}$, ($m \geq 2$) or $G = Z_2^3 \times Z_m$, ($m \geq 3$).

If $G = Z_2^2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, ($m \geq 2$), we can let

$S = \{a, b, ac^m, bc^m, c, c^{-1}\}$ or

$S = \{a, b, c^m, abc^m, c, c^{-1}\}$.

When $S = \{a, b, ac^m, bc^m, c, c^{-1}\}$, $\sigma = (ab, abc^m)(abc, abc^{m+1}) \dots (abc^{m-1}, abc^{2m-1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (35) of the main theorem.

When $S = \{a, b, c^m, abc^m, c, c^{-1}\}$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(3). If $G = Z_2^3 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$, ($m \geq 3$), $S = \{a, b, c, abc, d, d^{-1}\}$, the Case (2) of Theorem 1.1. Suppose $o(e) = 4$. Then $G =$

$Z_2^2 \times Z_4$, $Z_2^3 \times Z_4$ or $Z_2^4 \times Z_4$. If $G = Z_2^2 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, we have S is one of the following cases:
 $S_1 = \{a, b, ab, ac^2, c, c^{-1}\}$, $S_2 = \{a, b, ae^2, bc^2, c, c^{-1}\}$,
 $S_3 = \{a, b, ac^2, abc^2, c, c^{-1}\}$.
 $S_4 = \{a, b, ab, c^2, c, c^{-1}\}$,
 $S_5 = \{a, b, ac^2, c^2, c, c^{-1}\}$,
 $S_6 = \{a, b, abc^2, c^2, c, c^{-1}\}$.

When $S = S_1$, $\sigma = (ac^2, c)(ac, c^2)(bc, abc^2)(abc, bc^2) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (36 - S_1) of Theorem 1.1. When $S = S_2$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (35, $m = 2$) of Theorem 1.1. When $S = S_3$, $\sigma = (a, c)(ab, bc)(c^2, ac^3)(bc^3, abc^3) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.4, $\Gamma = \text{Cay}(G, S)$ is not normal the Case (36 - S_2) of Theorem 1.1. When $S = S_4$, we have the Case (3) of Theorem 1.1. When $S = S_5$, we have the Case (23) of Theorem 1.1. When $S = S_6$, Γ is normal by Lemma 3.3 (3, $m=2$). If $G = \mathbb{Z}_2^3 \times \mathbb{Z}_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$, we have $S = \{a, b, c, d, d^{-1}, u\}$, where $u = d^2, ab, ad^2, abc, abd^2$ or $abcd^2$. When $u = d^2$, we have the Case (5 - S_1) of Theorem 1.1. When $u = ab$, we have the Case (5 - S_2) of Theorem 1.1. When $u = ad^2$, we have the Case (5 - S_3) of Theorem 1.1. When $u = abc$, we have the Case (2) of Theorem 1.1. When $u = abd^2$, we have the Case (24) of Theorem 1.1. When $u = abcd^2$, $\sigma = (abcd^2, d)(bcd^2, ad)(acd^2, bd)(abd^2, cd)(abcd, d^2)(cd^2, abd)(bd^2, acd)$ and $(bcd, ad^2) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (37) of Theorem 1.1. If $G = \mathbb{Z}_2^4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle \times \langle e \rangle$, $S = \{a, b, c, d, e, e^{-1}\}$, we have the Case (4) of Theorem 1.1. Now suppose $d = e^3$. Then $G = \mathbb{Z}_2^2 \times \mathbb{Z}_6$ or $G = \mathbb{Z}_2^3 \times \mathbb{Z}_6$. If $G = \mathbb{Z}_2^2 \times \mathbb{Z}_6 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, we see that S is one of the following cases: $S_1 = \{a, b, ab, c^3, c, c^{-1}\}$, $S_2 = \{a, b, ac^3, c^3, c, c^{-1}\}$, $S_3 = \{a, b, abc^3, c^3, c, c^{-1}\}$. When $S = S_1$, we have the Case (6) of Theorem 1.1. For S_2 and S_3 , we have the Cases (2) and (3, $m = 3$) of Lemma 3.3 respectively. If $G = \mathbb{Z}_2^3 \times \mathbb{Z}_6 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$, then $S = \{a, b, c, d^3, d, d^{-1}\}$, the Case (7) of Theorem 1.1.

Case 3: $S = \{a, b, c, c^{-1}, d, d^{-1}\}$, where a, b are involutions but c, d are not. By the assumption (*) and the symmetry of c, c^{-1}, d and d^{-1} , we have five sub cases (I) $a = c^3$, (II) $a = c^2d$, (III) $o(c) = 4$, (IV) $c^3 = d$ and (V) $c^2 = d^2$. Suppose $a = c^3$, then G is isomorphic to one of the following: $Z_2 \times Z_{6m}$ ($m \geq 2$), $Z_2 \times Z_6$, $Z_6 \times Z_{2m}$ ($m \geq 2$), $Z_2^2 \times Z_{3m}$ ($m \geq 1$), $Z_2 \times Z_6 \times Z_m$ ($m \geq 3$). If $Z_2 \times Z_{6m} = \langle a \rangle \times \langle b \rangle$, ($m \geq 2$), we see that S is one of the following cases:
 $S_1 = \{a, b^{3m}, ab^{2m}, ab^{4m}, b, b^{-1}\}$, $S_2 = \{a, ab^{3m}, ab^m, ab^{5m}, b, b^{-1}\}$, $S_3 = \{a, b^{3m}, b^m, b^{5m}, b, b^{-1}\}$. When $S = S_1$, $\sigma = (a, ab^{2m}, ab^{4m})(ab, ab^{2m+1}, ab^{4m+1}) \dots (ab^{2m-1}, ab^{4m-1}, ab^{6m-1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by

Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (38) of the main theorem. For the Cases $S = S_2$ and $S = S_3$, we have the Cases (4) and (5) of Lemma 3.3. If $G = Z_2 \times Z_6 = \langle a \rangle \times \langle b \rangle$, we see that S is one of the following cases:

$$S_1 = \{a, a^3, ab^2, ab^4, b, b^{-1}\}, S_2 = \{a, b^3, b, b^{-1}, b^2, b^4\},$$

$$S_3 = \{a, b^3, b, b^{-1}, ab, ab^{-1}\}.$$

When $S = S_1$, $\sigma = (a, ab^2, ab^4)(ab, ab^3, ab^5) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 - S_5) of Theorem 1.1. When $S = S_2$, we have the Case (29, $m=3$) of Theorem 1.1. When $S = S_3$, $\sigma = (b^5, ab^5)(b^2, ab^2) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 - S_1) of Theorem 1.1. If $G = Z_6 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$, we see that S is one of the following cases:

$S_1 = \{a^3, b^m, a, a^{-1}, b, b^{-1}\}$, $S_2 = \{a^3, a^3b^m, a, a^{-1}, b, b^{-1}\}$. When $S =$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (8) of Theorem 1.1.

For $S = S_2$, when $m = 2$, $\sigma = (b^2, a^3b)(ab^2, a^4b)(a^2b^2, a^5b)(a^3b^2, b)(a^4b^2, ab)(a^5b^2, a^2b) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (40, $m=3$) of Theorem 1.1, and when $m \geq 3$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(6). If $G = Z_2^2 \times Z_{3m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 1$), $S = \{a, b, ac^m, ac^{2m}, c, c^{-1}\}$. Then we obtain the Case (25) of Theorem 1.1. If $G = Z_2 \times Z_6 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 3$), $S = \{b^3, a, b, b^{-1}, c, c^{-1}\}$. Then we obtain the Case (9) of Theorem 1.1. Suppose $a = c^2d$. Then we have one of the following cases:

$$(1): G = Z_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \ (m \geq 3), \\ S = \{a, b^m, b, b^{-1}, ab^{-2}, ab^2\}.$$

$$(2): G = Z_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle, \\ S_1 = \{ab^m, a, b, b^{-1}, ab^{m-2}, ab^{m+2}\} \quad (m \geq 3), \\ S_2 = \{b^m, a, b, b^{-1}, b^{m-2}, b^{m+2}\}, \quad m \geq 4,$$

$$(3): G = Z_2 \times Z_{4m+2} = \langle a \rangle \times \langle b \rangle,$$

$$S_1 = \{a, b, b^{-1}, b^{2m+1}, ab^m, ab^{3m+2}\} \quad (m \geq 1),$$

$$S_2 = \{a, b, b^{-1}, b^{2m+1}, b^m, b^{3m+2}\}, \quad m \geq 2$$

$$S_3 = \{a, b, b^{-1}, b^{2m+1}, b^{3m+1}, b^{m+1}\} \quad (m \geq 1),$$

$$S_4 = \{a, b^{2m+1}, ab^{3m+1}, ab^{m+1}, b, b^{-1}\}, \quad m \geq 1,$$

$$(4): G = Z_4 \times Z_{4m+2} = \langle a \rangle \times \langle b \rangle, \\ S_1 = \{a^2b^{2m+1}, b^{2m+1}, ab^m, a^3b^{3m+2}, b, b^{-1}\}, m \geq 1 \\ S_2 = \{a^{2b2m+1}, a^2, ab^m, a^3b^{3m+2}, b, b^{-1}\}, m \geq 1.$$

$$(5): G = \mathbb{Z}_2^2 \times \mathbb{Z}_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle (m \geq 3),$$

$$S = \{a, b, c, c^{-1}, ac^{-2}, ac^2\}.$$

$$(6): G = Z_2 \times Z_4 \times Z_{4m+2} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \quad (m \geq 1),$$

$$S = \{a, b^2c^{2m+1}, bc^m, b^{-1}c^{-m}, c, c^{-1}\}.$$

$$(7): G = \mathbb{Z}_2^2 \times \mathbb{Z}_{4m+2} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle (m \geq 1),$$

$$S = \{a, c^{2m+1}, bc^m, bc^{-m}, c, c^{-1}\}.$$

In the Case (1), when $m = 3$, $\sigma = (b^2, b^4) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not

normal, the Case (43– S_5 , $m = 3$) of Theorem 1.1. When $m \geq 4$, Γ is normal by Lemma 3.3(7– S_1). In the Case (2), $S = S_1$ when $m = 3$, $\sigma = (b^2, ab^2)(b^5, ab^5) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43– S_2) of Theorem 1.1.

When $m = 4$, $\sigma = (b, b^7)(b^2, b^6)(b^3, b^7) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case 39 ($m = 2$) of Theorem 1.1. When $m \geq 5$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3 (7– S_2). In the Case (2), $S = S_2$, when $m = 5$, we have the Case (26) of Theorem 1.1. When $m \geq 6$, Γ is normal by Lemma 3.3 (7– S_3).

In the Case (3), $S = S_1$, when $m = 1$, we have the Case (43 – S_1) of Theorem 1.1. When $m \geq 2$, Γ is normal by Lemma 3.3 (8 – S_1). In the Case (3), $S = S_2$, Γ is normal by Lemma 3.3 (8 – S_2). In the Case (3), $S = S_3$, when $m = 1, 2$, we have the Cases (29, $m = 3, 5$) of Theorem 1.1 respectively. When $m \geq 3$, Γ is normal by Lemma 3.3(8 – S_4). In the Case (3), $S = S_4$, when $m = 1$, $\sigma = (ab, ab^5) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (29, $m = 3$) of Theorem 1.1. When $m \geq 2$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(8 – S_3). In the Case (4), $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(9). In the Case (5), when $m = 3, 6$, by Proposition 2.1, Γ is not normal, the Case (25, $m = 1, 2$) of Theorem 1.1. Otherwise Γ is normal by Lemma 3.3(10). In the Case (6), Γ is normal by Lemma 3.3(16). In the Case (7), when $m = 1$, by Proposition 2.1, Γ is not normal, the Case 27 ($m = 1$) of Theorem 1.1. When $m \geq 2$, Γ is normal by Lemma 3.3 (17). Suppose $o(c) = 4$. Then we have one of the following cases:

(I) $G = Z_2 \times Z_4 = \langle a \rangle \times \langle b \rangle$, $S_1 = \{a, b^2, b, b^{-1}, ab, ab^{-1}\}$,

(II) $G = Z_2 \times Z_{4m} = \langle a \rangle \times \langle b \rangle$, $S_1 = \{a, b^{2m}, ab^m, ab^{3m}, b, b^{-1}\}$, $(m \geq 2)$, $S_2 = \{a, ab^{2m}, ab^m, ab^{3m}, b, b^{-1}\}$, $(m \geq 1)$, $S_3 = \{a, b^{2m}, b^m, b^{3m}, b, b^{-1}\}$, $(m \geq 2)$, $S_4 = \{a, ab^{2m}, b^m, b^{3m}, b, b^{-1}\}$, $(m \geq 2)$.

(III) $G = Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ ($m \geq 2$),
 $S_1 = \{a^2, b^m, a, a^{-1}, b, b^{-1}\}$, $S_2 = \{a^2, a^2b^m, a, a^{-1}, b, b^{-1}\}$, $S_3 = \{a^2b^m, b^m, a, a^{-1}, b, b^{-1}\}$.

(IV): $G = Z_2^2 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$,
 $S_1 = \{a, b, c, c^{-1}, ac, ac^{-1}\}$, $S_2 = \{a, b, c, c^{-1}, abc, abc^{-1}\}$.

(V): $G = Z_2^2 \times Z_{4m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 2$),
 $S_1 = \{a, b, abc^m, abc^{3m}, c, c^{-1}\}$, $S_2 = \{a, b, ac^m, ac^{3m}, c, c^{-1}\}$, $S_3 = \{a, b, c^m, c^{3m}, c, c^{-1}\}$.

(VI): $G = Z_2 \times Z_4 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 3$),
 $S_1 = \{a, b^2, b, b^{-1}, c, c^{-1}\}$,
 $S_2 = \{a, ab^2, b, b^{-1}, c, c^{-1}\}$.

(VII): $G = Z_2 \times Z_4 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 2$),
 $S_1 = \{a, c^m, b, b^{-1}, c, c^{-1}\}$, $S_2 = \{a, ac^m, b, b^{-1}, c, c^{-1}\}$,
 $S_3 = \{a, b^2c^m, b, b^{-1}, c, c^{-1}\}$, $S_4 = \{a, ab^2c^m, b, b^{-1}, c, c^{-1}\}$.

(VIII): $G = Z_2^2 \times Z_{4m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 1$),
 $S_1 = \{a, c^{2m}, bc^m, bc^{3m}, c, c^{-1}\}$,
 $S_2 = \{a, ac^{2m}, bc^m, bc^{3m}, c, c^{-1}\}$.

(IX): $G = Z_2^2 \times Z_4 = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$ ($m \geq 3$),
 $S = \{a, b, c, c^{-1}, d, d^{-1}\}$.

(X): $G = Z_2^3 \times Z_{4m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$ ($m \geq 1$),
 $S = \{a, b, cd^m, cd^{3m}, d, d^{-1}\}$.

In the Case (I), $\sigma = (ab, b^3) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 – S_1) of Theorem 1.1. In the Case (II), $S = S_1$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(11 – S_1). In the Case (II), $S = S_2$, $\sigma = (b, b^{-1})(b^2, b^{-2}) \dots (b^{2m-1}, b^{2m+1})(a, ab^m) \dots (ab^{2m+1}, ab^{-(m+1)}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (39) of Theorem 1.1. In the Case (II), $S = S_3$, and $S = S_4$, Γ is normal by Lemma 3.3, the Case (11 – S_2, S_3). In the Case (III), when $S = S_1$, we have the Case (10) of Theorem 1.1. When $S = S_2$, $m = 2$, $\sigma = (a^2b^2, b)(a^3b^2, ab)(ab^2, a^3b)(b^2, a^2b) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (40, $m = 2$) of Theorem 1.1. When $S = S_2$, $m \geq 3$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(12). When $S = S_3$, $\sigma = (a^2, ab^m)(a^2b, ab^{m+1}) \dots (a^2b^{2m-1}, ab^{m+(2m-1)}) \in A_1$ but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (40) of Theorem 1.1.

In the Case (IV), when $S = S_1$, $\sigma = (c^2, ac^2)(bc^2, abc^2) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (44 – S_2) of Theorem 1.1. When $S = S_2$, $\sigma = (ac^2, bc^2) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (44 – S_3) of Theorem 1.1. In the Case (V), $S = S_1$, when $m = 1$, with an argument similar to the Case (IV – S_2) we obtain the same result. When $m \geq 2$, Γ is normal by Lemma 3.3 (13 – S_1). In the Case (V), $S = S_2$, when $m = 1$, with an argument similar to the Case (IV – S_1), we obtain the same result.

When $m \geq 2$, Γ is normal by Lemma 3.3 (13 – S_2). In the Case (V), $S = S_3$, Γ is normal by Lemma 3.3(13 – S_3). In the Case (VI), we have the Case (11) of Theorem 1.1. In the Case (VII), $S = S_1$, $S = S_3$ and $S = S_2$ ($m = 2$), we have the Cases (12), (28) and (11 – S_2 , $m = 4$) of Theorem 1.1 respectively. In the Case (VII), $S = S_2$, $m \geq 3$, Γ is normal by Lemma 3.3(18). In the Case (VII), $S = S_4$, for $m = 2$, $\sigma = (b^3, c)(ab^3, ac)(abc^2, ab^2c^3)(b^2, bc)(b^3c^3, c^2)(b^2c, b^2c^3)(ab^2, abc)(ab^3c^3, ac^2) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (57) of Theorem 1.1, and for $m \geq 3$, Γ is normal by Lemma 3.3(44). In the Case (VIII), $S = S_1$ when $m = 1$, we have the Case (21, $m = 2$) of Theorem 1.1. If $m \geq 2$, Γ is normal by Lemma 3.3 (13 – S_4). In the Case (VIII), $S = S_2$, $\sigma = (ab, abc^{2m})(abc, abc^{2m+1}) \dots (abc^{2m-1}, abc^{4m-1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (41) of Theorem 1.1. In the Case

(IX), we have the Case (13) of Theorem 1.1. In the Case (X), $m = 1$, we have the Case (14) of Theorem 1.1, and for $m \geq 2$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(14). Suppose $c^3 = d$, then $G = \mathbb{Z}_2^2 \times Z_{2m}$, ($m \geq 4$) or $G = \mathbb{Z}_2^2 \times Z_m$ ($m \geq 5$, $m \neq 6$). If $G = \mathbb{Z}_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ ($m \geq 4$), we can let S to be $S_1 = \{a, b^m, b, b^{-1}, b^3, b^{-3}\}$ or $S_2 = \{a, ab^m, b, b^{-1}, b^3, b^{-3}\}$. Let $S = S_1$, for $m = 4, 5$ we have the Cases (29), (26) of Theorem 1.1 respectively, and for $m \geq 6$, Γ is normal by Lemma 3.3(19 – S_1). Let $S = S_2$. When $m = 4$, $\sigma = (ab^2, ab^6) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 – S_4), $m = 4$ of Theorem 1.1. When $m = 5$, $\sigma = (b^3, b^7)(ab^3, ab^7)(b^2, b^8)(ab^2, ab^8) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (42) of Theorem 1.1. When $m \geq 6$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(19 – S_2). If $G = \mathbb{Z}_2^2 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m \geq 5$, $m \neq 6$), $S = \{a, b, c, c^{-1}, c^3, c^{-3}\}$. When $m = 5, 10$ and $m = 8$ we have the Cases (15), and (16) of Theorem 1.1 respectively. When $m = 7, 9$, $m \geq 11$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(15). Suppose $c^2 = d^2$, then $G = \mathbb{Z}_2 \times Z_{2m}$, $G = \mathbb{Z}_2^2 \times Z_{2m}$ ($m \geq 3$) $G = \mathbb{Z}_2^2 \times Z_{2m-1}$ ($m \geq 2$) or $G = \mathbb{Z}_2^2 \times Z_m$ ($m \geq 3$). If $G = \mathbb{Z}_2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle$ we see that S is one of the following cases:

- 1) $S_1 = \{a, b^m, b, b^{-1}, ab, ab^{-1}\}$, $m \geq 2$,
- 2) $S_2 = \{a, ab^m, b, b^{-1}, ab, ab^{-1}\}$, $m \geq 2$,
- 3) $S_3 = \{a, b^m, b, b^{-1}, b^{m+1}, b^{m-1}\}$, $m \geq 3$,
- 4) $S_4 = \{a, ab^m, b, b^{-1}, b^{m+1}, b^{m-1}\}$, $m \geq 3$,
- 5) $S_5 = \{a, b^m, b, b^{-1}, ab^{m+1}, ab^{m-1}\}$, $m \geq 3$,
- 6) $S_6 = \{a, ab^m, b, b^{-1}, ab^{m+1}, ab^{m-1}\}$, $m \geq 3$,
- 7) $S_7 = \{ab^m, b^m, b, b^{-1}, ab, ab^{-1}\}$, $m \geq 2$,
- 8) $S_8 = \{ab^m, b^m, b, b^{-1}, ab^{m+1}, ab^{m-1}\}$, $m \geq 2$.

In the Case (1), $m \geq 2$, when $m = 2i$, $\sigma = (b^i, ab^i)(b^{3i}, ab^{3i}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$ and when $m = 2i + 1$, $\sigma = (b^{i+1}, ab^{i+1})(b^{3i+2}, ab^{3i+2}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 – S_1) of Theorem 1.1. In the Case (2), similarly Case (1), $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 – S_2) of Theorem 1.1. In the Case (3), we have the Case (29) of Theorem 1.1. In the Case (4), when $m = 2i$, $\sigma = (ab^i, ab^{3i}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$ and when $m = 2i + 1$, $\sigma = (ab^{i+1}, ab^{3i+2}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 – S_4) of Theorem 1.1. In the Case (5), when $m = 2i$, $\sigma = (b^{3i}, ab^i) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$ and when $m = 2i + 1$, $\sigma = (b^{i+1}, ab^{3i+2}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 – S_5) of Theorem 1.1. In the Case (6), when $m = 2i$, $\sigma = (b^i, ab^{3i})(b^{3i}, ab^i) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$ and when $m = 2i + 1$, $\sigma = (b^{i+1}, ab^{3i+2})(b^{3i+2}, ab^{i+1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 – S_6) of Theorem 1.1.

but $\sigma \notin \text{Aut}(G, S)$. Hence by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 – S_6) of Theorem 1.1.

In the Case (7), for $m = 2i$ and $m = 2i + 1$, $\sigma = (b^{i+1}, ab^{i+1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 – S_3) of Theorem 1.1. In the Case (8), for $m = 2i$ and $m = 2i - 1$, $\sigma = (b^i, ab^{i+m})(b^{m+i}, ab^i) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (43 – S_1) of Theorem 1.1. If $G = \mathbb{Z}_2^2 \times Z_{2m} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, we can let S to be one of the following cases:

- (1): $S_1 = \{a, b, c, c^{-1}, ac, ac^{-1}\}$, $m \geq 2$,
- (2): $S_2 = \{a, b, c, c^{-1}, abc, abc^{-1}\}$, $m \geq 2$,
- (3): $S_3 = \{a, b, c, c^{-1}, c^{m+1}, c^{m-1}\}$, $m \geq 3$,
- (4): $S_4 = \{a, b, c, c^{-1}, ac^{m+1}, ac^{m-1}\}$, $m \geq 2$,
- (5): $S_5 = \{a, b, c, c^{-1}, abc^{m+1}, abc^{m-1}\}$, $m \geq 2$,
- (6): $S_6 = \{a, cm, c, c^{-1}, bc, bc^{-1}\}$, $m \geq 2$,
- (7): $S_7 = \{a, ac^m, c, c^{-1}, bc, bc^{-1}\}$, $m \geq 2$,
- (8): $S_8 = \{a, c^m, c, c^{-1}, bc^{m+1}, bc^{m-1}\}$, $m \geq 2$,
- (9): $S_9 = \{a, ac^m, c, c^{-1}, bc^{m+1}, bc^{m-1}\}$, $m \geq 2$.

In the Case (1), Γ is not normal, the Case (30) of Theorem 1.1. In the Case (2), $\sigma = (ac^{m-1}, bc^{m-1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (44 – S_1) of Theorem 1.1. In the Case (3), when $m = 2i$, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (16) of Theorem 1.1.

When $m = 2i+1$, $\Gamma = \text{Cay}(G, S)$ is not normal, we have the Case 14 (with m odd) of Theorem 1.1. In the Case (4), when $m = 2i$, $i \geq 2$, $\sigma = (c^i, ac^{3i})(ac^i, c^{3i})(bc^i, abc^{3i})(abc^i, bc^{3i}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, and when $m = 2i+1$, $\sigma = (c^{i+1}, ac^{3i+2})(ac^{i+1}, c^{3i+2})(bc^{i+1}, abc^{3i+2})(abc^{i+1}, bc^{3i+2}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (44 – S_2) of Theorem 1.1. In the Case (5), when $m = 2i$, $i \geq 2$, $\sigma = (c^{3i}, abc^i)(ac^{3i}, bc^i)(bc^{3i}, ac^i)(abc^{3i}, c^i) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$ and when $m = 2i + 1$, $\sigma = (c^{3i+2}, abc^{i+1})(ac^{3i+2}, bc^{3i+1})(bc^{3i+2}, ac^{i+1})(abc^{3i+2}, c^{i+1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$; by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (44 – S_3) of Theorem 1.1. In the Case (6), $m \geq 2$, Γ is not normal, we have the Case (27) of Theorem 1.1. In the Case (7), if $m \geq 3$, for $m = 2i$ and $m = 2i - 1$, $\sigma = (ci, bci)(aci, abc)(ci+m, bci+m)(aci+m, abc+m) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, and if $m = 2$, $\sigma = (b, bc^2)(ab, abc^2) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$. Then by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (44 – S_4) of Theorem 1.1. In the Case (8), for $m = 2i$ and $m = 2i-1$, $\sigma = (c^i, bc^{i+m})(ac^i, abc^{i+m})(c^{i+m}, bc^i)(ac^{i+m}, abc^i) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (44 – S_5) of Theorem 1.1. In the Case (9), similarly Case (8), $\Gamma = \text{Cay}(G, S)$ is not normal. We have the Case (44 – S_6) of Theorem 1.1.

If $G = \mathbb{Z}_2^2 \times Z_{2m-1} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, ($m \geq 2$), then S is $S_1 = \{a, b, c, c^{-1}, ac, ac^{-1}\}$ or $S_2 = \{a, b, c, c^{-1}, abc, abc^{-1}\}$. When $S = S_1$, $\sigma = (cm, acm)(bcm, abcm) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (44 – S_7) of the main theorem.

When $S = S_2$, $\sigma = (ac^{m-1}, bc^{m-1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (44– S_1) of Theorem 1.1. If $G = Z_2^2 \times Z_m = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle$, we can consider $m \geq 3$, $S = \{a, b, d, d^{-1}, cd, cd^{-1}\}$. In this case for $m = 2i$ and $m = 2i-1$, ($i \geq 2$) $\sigma = (d^i, cd^i)(ad^i, acd^i)(bd^i bcd^i)(abd^i, abcd^i) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$ and by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal the Case (14) of Theorem 1.1.

Case 4: $S = \{a, a^{-1}, b, b^{-1}, c, c^{-1}\}$, where the elements of the set S are not involution. By the assumption (*), $o(a) = 4$, $a^2 = b^2$, $a^3 = b$ or $c = a^2b$. Suppose $o(a) = 4$, then G is isomorphic to one of the following: Z_{4m} ($m \geq 2$), $Z_4 \times Z_m$, $Z_{4m} \times Z_n$ ($m \geq 2, n \geq 3$), $Z_{4m} \times Z_{4n}$ ($m \geq 1, n \geq 1$), $Z_4 \times Z_m \times Z_n$ ($m, n \geq 3$). If $G = Z_{4m} = \langle a \rangle$ ($m \geq 2$), we can let $S = \{a^m, a^{-m}, a, a^{-1}, a^j, a^{-j}\}$, where $1 < j < 2m$, $j \neq m$. When $j = 2m-1$, $\sigma = (a^m, a^{-m}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (45) of Theorem 1.1. When $j \neq 2m-1$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(31). If $G = Z_4 \times Z_m = \langle a \rangle \times \langle b \rangle$, we can let S to be one of the following cases:

$$(1): S_1 = \{a, a^3, b, b^{-1}, ab^j, a^3b^{-j}\}, m \geq 3, 1 \leq j \leq [m/2],$$

$$(2): S_2 = \{a, a^3, b, b^{-1}, a^2b^j, a^2b^{-j}\}, m \geq 2, 1 \leq j \leq (m/2),$$

$$(3): S_3 = \{a, a^3, b, b^{-1}, b^j, b^{-j}\}, m \geq 5, 1 < j < (m/2).$$

When $S = S_1$, for $m = 2j$, $\sigma = (a^2, a^2b^j)(a^2b, a^2b^{j+1}) \dots (a^2b^{j-1}, a^2b^{2j-1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (49) of the main theorem. Otherwise, Γ is normal by Lemma 3.3(32). When $S = S_2$, $j = 1$ for $m = 2k$ and $m = 2k-1$, $k \geq 2$, $\sigma = (ab^k, a^3b^k) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, and when $j = k-1, m = 2k$ ($k \geq 3$), $\sigma = (b^{k-1}, a^2b^{-1})(ab^{k-1}, a^3b^{-1})(a^2b^{k-1}, b^{-1})(a3b^{k-1}, ab^{-1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, then these graphs are non-normal and we have the Cases (49, 50) of Theorem 1.1. Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3 (33, 34). When $S = S_3$, for $j = k-1, m = 2k$, if k is odd we have the Case (17) of Theorem 1.1 and if k is even we have the Case 19 ($m = 4$) of the main theorem. For $m = 5; j = 2$ and $m = 10; j = 3$ we have the Case 21($m = 4$) of the main theorem.

Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3 (35). If $G = Z_{4m} \times Z_n = \langle a \rangle \times \langle b \rangle$ ($m \geq 2, n \geq 3$), $S = \{a^m, a^{-m}, a, a^{-1}, b, b^{-1}\}$, then $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(20). If $G = Z_{4m} \times Z_{4n} = \langle a \rangle \times \langle b \rangle$ ($m \geq 1, n \geq 1$), $S = \{a^m b^n, a^{-m} b^{-n}, a, a^{-1}, b, b^{-1}\}$, then $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(21). If $G = Z_4 \times Z_m \times Z_n = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$ ($m, n \geq 3$), we can consider $S = \{a, a^3, b, b^{-1}, c, c^{-1}\}$. In this case, for $m = 4$, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (18) of Theorem 1.1, and for $m, n \neq 4$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(22). Suppose $a^2 = b^2$. Then G is isomorphic to one of the following: Z_{2m} , $Z_2 \times Z_m$ ($m \geq 5$), $Z_{2m} \times Z_{2n+1}$, $Z_{2m} \times Z_{2n}$ ($m \geq 3, n \geq 2$), $Z_2 \times Z_n$ ($m \geq 3, n \geq 3$). If $G = Z_{2m} = \langle a \rangle$, we can let S to be $S_1 = \{a^j, a^{-j}, a^{m+j}, a^{m-j}, a, a^{-1}\}$,

$2 \leq j \leq m/2$, $m \geq 5$, or $S_2 = \{a, a^{-1}, a^{m+1}, a^{m-1}, a^j, a^{-j}\}$, $2 \leq j \leq m-2$, $m \geq 4$. When $S = S_1$, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(23). When $S = S_2$, $(m, j) = 2$, for $m = 4i+2, j = 2i$ (with i odd) and $j = 2i+2$ (with i even), $\sigma = (a^2, a^{2+m/2})(a^6, a^{6+m/2}) \dots (a^{2m-2}, a^{m/2-2}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, and when $(m, j) = 1 > 2$, then $\sigma = (a^2, a^{m+2})(a^{2+1}, a^{m+2+1}) \dots (a^{m+2-1}, a^{2-1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, then by Proposition 2.1 these graphs are non-normal, and we have the Case (46) of the main theorem. Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3 (36). If $G = Z_2 \times Z_m = \langle a \rangle \times \langle b \rangle$ $m \geq 5$, we can let S to be $S_1 = \{b, b^{-1}, ab, ab^{-1}, b^j, b^{-j}\}$, $2 \geq j > m/2$ or $S_2 = \{b, b^{-1}, ab, ab^{-1}, ab^j, ab^{-j}\}$, $2 \geq j > m/2$. Let $S = S_1$. When $(m, j) = p > 2$; $m = (t+1)p$, $\sigma = (b, ab)(b^{p+1}, ab^{p+1}) \dots (bt^{p+1}, abt^{p+1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (47– S_1) of the main theorem.

When $m = 8, j = 3$, $\sigma = (b^2, b^6)(ab, a b^7)(a b^3, a b^5) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (48– S_1) of Theorem 1.1. Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(37, 38– S_1). Let $S = S_2$. When $(m, j) = p > 2$; $m = (t+1)p$, $\sigma = (b, ab)(b^{p+1}, ab^{p+1}) \dots (b^{tp+1}, ab^{tp+1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (47– S_2) of Theorem 1.1. When $m = 8, j = 3$, $\sigma = (b^2, b^6)(b^3, b^5)(b, b^7) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case(48– S_2) of main theorem. Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(37, 38 – S_2). If $G = Z_{2m} \times Z_n = \langle a \rangle \times \langle b \rangle$, we can let S to be one of the following cases:

$$(1): S_1 = \{a, a^{-1}, a^{m-1}, a^{m-1}, b, b^{-1}\}, m \geq 3,$$

$$(2): S_2 = \{b, b^{-1}, a^m b, a^m b^{-1}, a, a^{-1}\}, m \geq 2,$$

$$(3): S_3 = \{b, b^{-1}, a^{m+1} b^l, a^{m-1} b^l, a, a^{-1}\}, n = 21, 1 \geq 2.$$

Let $S = S_1$. When $m = 2i$, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (19) of Theorem 1.1. When $m = 2i+1$, $\sigma = (a^{m-1}, a^{2m-1})(a^{m-1}b, a^{2m-1}b) \dots (a^{m-1}b^{n-1}, a^{2m-1}b^{n-1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.4, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case 20 (with m odd) of Theorem 1.1. Let $S = S_2$. When $n = 2j, 2j-1$ ($j \geq 2$), $\sigma = (b^j, a^m b^j)(ab^j, a^{m+1} b^j) \dots (a^{m-1} b^j, a^{2m-1} b^j) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (49) of Theorem 1.1. When $S = S_3$, $\sigma = (a^{m-1}, a^{-1} b^l)(a^{m-1} b, a^{-1} b^{l+1}) \dots (a^{m-1} b^{2l-1}, a^{-1} b^{l-1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (50) of Theorem 1.1. If $G = Z_2 \times Z_m \times Z_n = \langle a \rangle \times \langle b \rangle \times \langle c \rangle$, $m \geq 3, n \geq 3$, $S = \{b, b^{-1}, ab, ab^{-1}, c, c^{-1}\}$, we have the Case (20) of the main theorem. Suppose $a^3 = b$, then we have one of the following cases :

$$(1): G = Z_m = \langle a \rangle, m \geq 7, S_1 = \{a, a^{-1}, a^3, a^{-3}, a^j, a^{-j}\}, (j \neq 3, 2 \leq j \leq m/2),$$

$$S_2 = \{a^j, a^{-j}, a^{3j}, a^{-3j}, a, a^{-1}\}, (2 \leq j \leq m/2, 3j \neq 0, 1, m-1, j, m-j, m/2 \pmod m).$$

$$(2): G = Z_m \times Z_n = \langle a \rangle \times \langle b \rangle, (n \geq 3, m \geq 5, m \neq 6), S = \{a, a^{-1}, a^3, a^{-3}, b, b^{-1}\}.$$

$$(3): G = Z_{3m-1} \times Z_{3n} = \langle a \rangle \times \langle b \rangle, (m \geq 2, n \geq 1),$$

$$S = \{a^m b^n, a^{2m-1} b^{2n}, a^3, a, a^{-1}, b, b^{-1}\}.$$

$$(4): G = Z_{3m+1} \times Z_{3n} = \langle a \rangle \times \langle b \rangle, (m, n \geq 1), S = \{a^{2m+1} b^n, a^m b^{2n}, a, a^{-1}, b, b^{-1}\}.$$

In the Case (1), when $m = 6k, j = 3k-1, k \geq 2, \sigma = (a, a^{3k+1})(a^4, a^{3k+4}) \dots (a^{3k-2}, a^{6k-2}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (51) of Theorem 1.1. In this case for S_1 , when $m = 7, j = 2, \sigma = (a^2, a^5) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (52) of Theorem 1.1. When $m = 8, j = 2, \sigma = (a^2, a^6) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (45) of the main theorem.

When $m = 14, j = 5, \sigma = (a^2, a^{12})(a^5, a^9) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (52) of Theorem 1.1. Also for S_2 , when $m = 7, j = 3, \sigma = (a^3, a^4) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (52) of Theorem 1.1. When $m = 14, j = 3, \sigma = (a^2, a^{12})(a^5, a^9) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (52) of Theorem 1.1. Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(39, 40, 41). In the Case (2), when $m = 5, 10$ and 8 we have the Cases (21) and (19, $m = 2$) of Theorem 1.1 respectively. Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3 (24). In the Cases (3) and (4), $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3 (25, 26). Suppose $c = a^2b$. Then we have one of the following cases:

$$(1): G = Z_m = \langle a \rangle (m \geq 7), S = \{a, a^{-1}, a^j, a^{-j}, a^{2+j}, a^{-2-j}\}, \text{ if } m = 2k, 2 \leq j \leq (m/2) - 3 \text{ and if } m = 2k + 1, 2 \leq j \leq (m/2) - 1.$$

$$(2): G = Z_m = \langle a \rangle (m \geq 7), S_1 = \{a^j, a^{-j}, a, a^{-1}, a^{2j+1}, a^{-2j-1}\}, 2 \leq j \leq m-2, j \neq m/2 \text{ and } 2j+1 \neq m/2, 0, 1, m-1, j, m-j \pmod{m}$$

$$(3): G = Z_m \times Z_n = \langle a \rangle \times \langle b \rangle (m, n \geq 3), S = \{a, a^{-1}, b, b^{-1}, a^2b, a^{-2}b^{-1}\}.$$

$$(4): G = Z_{2m+1} \times Z_n = \langle a \rangle \times \langle b \rangle (m \geq 2, n \geq 3), S = \{a^m, a^{m+1}, a, a^{-1}, b, b^{-1}\}.$$

$$(5): G = Z_{2m+1} \times Z_{2n+1} = \langle a \rangle \times \langle b \rangle (m, n \geq 1), S = \{a^m b^{n+1}, a^m b^n, a, a^{-1}, b, b^{-1}\}.$$

$$(6): G = Z_2 \times Z_{2m+1} \times Z_{2n+1} = \langle a \rangle \times \langle b \rangle \times \langle c \rangle (m, n \geq 1), S = \{ab^m c^{n+1}, ab^{m+1} c^n, b, b^{-1}, c, c^{-1}\}.$$

In the Case (1), if $m = 3k, k \geq 3, j = k-1, \sigma = (a^k, a^{2k}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (53) of Theorem 1.1. If $m = 6k, k \geq 3, j = 3k-3, \sigma = (a, a^{3k+1})(a^4, a^{3k+4}) \dots (a^{3k-2}, a^{6k-2}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (51 - $S_2, m \geq 3$) of Theorem 1.1. If $m = 7, j = 2, \sigma = (a^3, a^4) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, and if $m = 14, j = 2, \sigma = (a^2, a^{12})(a^5, a^9) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (52) of the main theorem.

Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(42, 43). In the Case (2), if $m = 7, j = 4, \sigma = (a^5, a^9) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, and if $m = 14, j = 5, \sigma = (a^2, a^{12})(a^5, a^9) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (52) of Theorem 1.1. If $m = 3k, j = k-1, k \geq 3, \sigma = (a^k, a^{2k}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (53) of Theorem 1.1. If $m = 4j, j \geq 2, \sigma = (a^j, a^{3j}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (45) of Theorem 1.1. If $m = 6k, j = 3k+1, k \geq 3, \sigma = (a, a^{3k+1})(a^4, a^{3k+4}) \dots (a^{3k-2}, a^{6k-2}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (51 - S_1) of Theorem 1.1. If $m = 8k+4, k \geq 1$, for $k = 2i-1, j = 4i-2, i \geq 1, \sigma = (a^2, a^{12i-1})(a^6, a^{12i+3}) \dots (a^{m-2}, a^{12i-5}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (54) of Theorem 1.1, and for $k = 2i, j = 12i+2, i \geq 1, \sigma = (a^2, a^{4i+3})(a^6, a^{4i+7}) \dots (a^{m-2}, a^{4i-1}) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (55) of Theorem 1.1. In the Case (3), if $m = n = 3, \sigma = (ab, a^2b^2) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (56) of the main theorem. If $m = 4, \sigma = (ab^2, a^3b^2) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (50) of Theorem 1.1. Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(27).

In the Case (4), if $m = 2$, we have the Case (21) of Theorem 1.1. if $m \geq 3, \Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(28). In the Case (5), if $m = n = 1, \sigma = (ab, a^2b^2) \in A_1$, but $\sigma \notin \text{Aut}(G, S)$, by Proposition 2.1, $\Gamma = \text{Cay}(G, S)$ is not normal, the Case (56) of Theorem 1.1. Otherwise, $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(29). In the Case (6), $\Gamma = \text{Cay}(G, S)$ is normal by Lemma 3.3(30).

4. Conclusion

Let $\Gamma = \text{Cay}(G, S)$ be a connected Cayley graph of a abelian group G on S . In this paper we have shown all non-normal Cayley graph Γ with valency 6.

References

- [1] Alspach, B., Conder, M., Marusic, D., Xu, M.Y., "Two-Arc Transitive Circulants", Journal of Algebraic Combinatorics, 5, 1996, PP. 83-86.
- [2] Xu, M.Y., "Half-Transitive Graphs of Prime-Cube Order", Journal of Algebraic Combinatorics, 1, 1992, PP. 275-292.
- [3] Alspach, B., "Point-Symmetric Graphs and Digraphs of Prime Order and Transitive Permutation Groups of Prime Order", J. Combin. Theory, 15, 1973, PP. 12-17.
- [4] Du, S.F., Wang, R.J., Xu, M.Y. "On Normality of Cayley Digraphs of Order Twice a Prime", Australian Journal of Combinatorics, 18, 1998, PP. 227-234.

- [5] Baik, Y.G., Feng, Y.Q., Sim, H.S., “*The Normality of Cayley Graphs of Finite Abelian Group with Valency 5*”, Sys. Sci. and Math. Sci., 13(4), 2000, PP. 420-431.
- [6] Baik, Y.G., Feng, Y.Q., Sim, H.S., Xu, M.Y., “*On The Normality of Cayley Graphs of Abelian Group*”, Algebra Colloq. 5, 1998, PP. 297-304.
- [7] Feng, Y.Q., Gao, T.P., “*Automorphism Groups and Isomorphism of Cayley Digraphs of Abelian Groups*”, Australian Journal of Combinatorics, 16 1997, PP. 183-187.
- [8] Wang, C.Q., Wang, D.J., Xu, M.Y., “*On Normal Cayley Graphs of Finite Groups*”, Science in China (A), 28(2), 1998, PP. 131-139.
- [9] Xu, M.Y., “*Automorphism Groups and Isomorphism of Cayley Graphs*”, Discrete Math, 182, 1998, PP. 309-319.