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Abstract: We call a Cayley graph Γ = Cay (G, S) normal for G, if  the right regular 
representation R(G) of G is normal in the full automorphism group of Aut(Γ). In 
this paper, a classification of all non-normal Cayley graphs of finite abelian group 
with valency 6 was presented. 
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1. Introduction1 

Let G be a finite group, and S be a subset of G not 
containing the identity element 1G. The Cayley digraph  
Γ=Cay(G,S) of G relative to S is defined as the graph 
with vertex set V(Γ) = G and edge set E(Γ) consisting 
of those ordered pairs (x, y) from G for which yx-1∈S. 
Immediately from the definition we find that, there are 
three obvious facts: (1) Aut(Γ) contains the right 
regular representation R(G) of G and so Γ is vertex-
transitive.   
(2) Γ is connected if and only if G =< S>. (3) Γ is an 
undirected if and only if S-1= S. 
A Cayley (di)graph Γ=Cay(G,S) is called normal if the 
right regular representation R(G) of G is a normal 
subgroup of the automorphism group of Γ. 
The concept of normality of Cayley (di)graphs is 
known to be important for the study of arc-transitive 
graphs and half-transitive graphs (see[1,2]). Given a 
finite group G, a natural problem is to determine all 
normal or non-normal Cayley (di)graphs of G. This 
problem is very difficult and is solved only for the 
cyclic groups of prime order by Alspach [3] and the 
groups of order twice a prime by Du et al. [4], while 
some partial answers for other groups to this problem 
can be found in [5-8]. Wang et al. [8] characterized all 
normal disconnected Cayley’s graphs of finite groups. 
Therefore the main work to determine the normality of 
Cayley graphs is to determine the normality of 
connected Cayley graphs. In [5, 6], all non-normal 
Cayley graphs of abelian groups with valency at most 5 
were classified. The purpose of this paper is the 
following main theorem. 
 
Theorem 1.1 Let Γ = Cay (G, S) be a connected 
undirected Cayley graph of a finite abelian group G on 
S with valency 6. Then Γ is normal except when one of 
the following cases happens: 
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(1): G =  = <a> × <b> × <c> × <d> ×<e>,  5

2z
S = {a, b, c, abc, d, e}. 
 
(2): G = × Zm = <a> × <b> × <c> × <d> ( 3),  3

2z m ≥

S = {a, b, c, abc, d, d-1}. 
 
(3): G = × Z4 = <a> × <b> × <c>,  2

2z
 
S = {a, b, ab, c2, c, c-1}. 
 
(4): G = × Z4= <a> × <b> × <c> × <d> × <e>,  4

2z
S = {a, b, c, d, e, e-1}. 
 

(5): G = × Z4 = <a> × <b> × <c> × <d> 3

2z
S1 = {a, b, c, d2, d, d-1}, 
S2= {a, b, ab, c, d, d-1}, S3 = {a, b, c, ad2, d, d-1}. 
 

(6): G =  × Z6 = <a> × <b> × <c>,  2

2z
S = {a, b, ab, c3, c, c-1}. 
 

(7): G =  × Z6= <a> × <b> × <c> × <d>,  3

2z
S = {a, b, c, d3, d, d-1}. 
 
(8): G = Z6 × Z2m = <a> × <b> ( m  2),  ≥
S = {a3, bm, a, a-1, b, b-1}. 
 

(9): G = Z2× Z6 × Zm = <a> × <b> × <c> (  3),  m ≥
S = {a, b3, b, b-1, c, c-1}. 
 

(10): G = Z4× Z2m = <a> × <b> (  2),  m ≥
S = {a, a-1, a2, b, b-1, bm}. 
 

(11): G = Z2× Z4× Zm = <a> × <b> × <c> ( 3), m ≥
S1= {a, b, b-1, b2, c, c-1}, S2 = {a, b, b-1, ab2, c, c-1}. 
 

(12): G = Z2× Z4× Z2m = <a> × <b> × <c> ( 2),  m ≥
S = {a, b, b-1, c, c-1, cm}. 
 

(13): G =  × Z4× Zm = <a> × <b> × <c> × <d> 
(m≥3), S = {a, b, c, c-1, d, d−1}. 

2

2z
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(14): G = × Zm = <a> × <b> × <c> × <d> (m≥ 3),  3

2z
S = {a, b, cd, cd−1, d, d−1}. 
 
(15): G = × Zm = <a> × <b> × <c> (m = 5, 10),  2

2z
S = {a, b, c, c-1, c3, c−3}. 
 
(16): G =  × Z4m = <a> × <b> × <c> ( 2),  2

2z m ≥
S = {a, b, c, c-1, c2m+1, c2m−1}. 
 
(17): G = Z4× Z2m = <a> × <b> (m≥ 3, m is odd),  
S = {a, a3, b, b-1, bm+1,bm−1}. 
 

(18): G = × Zm = <a> × <b> × <c> (m≥ 3),  2

4z
S = {a, a3, b, b3, c, c-1}. 
 
(19): G = Z4m × Zn = <a> × <b> (m≥ 2, n≥3),  
S = {a, a−1, a2m+1, a2m−1, b, b-1}. 
 
(20): G = Z2× Zm × Zn = <a>×<b>×<c> (m≥ 3, n≥3),  
S ={ab, a b-1, b,b-1, c, c-1}. 
 
(21): G = Zm × Zn = <a> × <b> (m = 5, 10, n≥3),  
S = {a, a−1, a3, a−3, b, b-1}. 
 
(22): G = = <a> × <b> × <c> × <d>,  4

2z
S = {a, b, ab, c, abc, d}. 
 
(23): G = × Z4= <a> × <b> × <c>,  2

2z
S = {a, b, ac2, c, c-1, c2}. 
 
(24): G =  × Z4= <a> × <b> × <c> × <d>,  3

2z
S = {a, b, c, d, d−1, abd2}. 
 

(25): G =  × Z3m = <a> × <b> × <c> (m≥ 1),  2

2z
S = {a, b, acm, ac2m, c, c-1}. 
 
(26): G = Z2× Z10 = <a> × <b>, S= {a, b, b3, b5, b7, b9}. 
 

(27): G = × Z2m = <a> × <b> × <c> (m≥ 2),  2

2z
S = {ac, ac-1, b, cm, c, c-1}. 
 
(28): G = Z2× Z4× Z2m = <a> × <b> × <c> (m≥ 2),  
S = {a, b2cm, b, b-1, c, c-1}. 
 

(29): G = Z2× Z2m = <a> × <b> (m≥ 3),  
S = {a, bm, b, b-1 , bm+1, bm−1}. 
 

(30): G =  × Z2m = <a> × <b> × <c> (m≥ 2),  2

2z
S = {a, b, ac, ac−1, c, c−1}. 
 

(31): G = Z2× Z6m = <a> × <b> (m ≥3, m is odd),  
S = {a, b2, b−2, bm, b5m, b3m }. 
 

(32): G = × Z6m = <a> × <b> × <c> (m≥ 2),  2

2z
S = {a, bcm, bc3m, bc5m, c, c-1}. 

 
(33): G =  = <a> × <b> × <c>, S = {a, b, c, ab, ac, 
abc}. 

3

2z
 

(34): G =  = <a> × <b> × <c> × <d>,  4

2z
S = {a, b, c, d, abc, abd}. 
 

(35): G = × Z2m = <a> × <b> × <c> (m≥ 2),  2

2z
S = {a, b, acm, bcm, c, c−1}. 
 

(36): G = × Z4 = <a>×<b>×<c>,  2

2z
S1= {a, b, ab, ac2, c, c-1},  
S2= {a, b, ac2, abc2, c, c−1}. 
 

(37): G = × Z4= <a> × <b> × <c> × <d>,  3

2z
S = {a, b, c, abcd2, d, d−1}. 
 
(38): G = Z2× Z6m = <a> × <b> (m≥ 2),  
S = {a, b3m, ab2m, ab4m, b, b-1}. 
 
(39): G = Z2× Z4m = <a> × <b> (m≥ 1),  
S = {a, abm, ab2m, ab3m, b, b-1}. 
 
(40): G = Z4× Z2m = <a> × <b> (m≥ 2),  
S = {a, a−1, bm, a2bm, b, b-1}. 
 

(41): G = × Z4m = <a> × <b> × <c> (m≥ 1),  2

2z
S = {a, ac2m, bcm, bc3m, c, c-1}. 
 

(42): G = Z2 × Z10 = <a> × <b>, 
S = {a, ab5, b, b9, b3, b7}. 
 
(43): G = Z2 × Z2m = <a> × <b>,  
S1= {a, b, b−1, bm, ab, a b-1}, m≥ 2,  
S2={a, abm, b, b−1, ab, a b-1}, m≥ 2,  
S3 = {abm, bm, b, b−1, ab, a b-1}, m≥ 2, S4 ={a, abm, b, 
b−1, bm+1, bm−1}, m≥ 3, S5 = {a, b, b−1, bm, abm+1, abm−1}, 
m≥ 3, S6 ={a, abm, b, b−1, abm+1, abm−1}, m≥ 3  
S7={abm, b, b−1, bm, abm+1, abm−1}, m≥3  
 

(44): G = × Zm = <a> × <b> × <c>, S1= {a, b, c, c-1, 
abc, abc-1}, m≥ 3, S2={a, b, c, c-1, ack+1, ack−1}, m = 2k, 
k≥ 3, S3= {a, b, c, c-1, abck+1, abck−1}, m =2k, k ≥ 3,  

2

2z

S4= {a, bc, b c-1, ack, c, c-1}, m = 2k, k ≥ 2,  
S5= {a, bck+1, bck−1, ck, c, c-1}, m = 2k, k ≥ 3,    
S6= {a, bck+1, bck−1, ack, c, c-1}, m = 2k, k ≥ 3, 
S7= {a, b, c, c−1, ac, ac−1}, m = 2k − 1, k ≥ 2. 
 
(45): G = Z4m = <a> (m≥ 2),  
S = {a, a−1, am, a−m, a2m+1, a2m−1}. 
 
(46): G = Z2m = <a> (m≥ 4),  
S = {a, a−1, am+1, am−1, ak, a−k} (2 ≤k ≤ m − 2), 
(m, k) = l, if l > 2 or l = 2 for m = 4i + 2; (k = 2i, with i 
odd or k = 2i + 2, with i even). 
 

(47): G = Z2 × Zm = <a> × <b> (m≥ 5), 

S1 = {ab, ab−1, b, b-1, bj , b−j} (2 ≤j < m
2

 ), (m, j) = p > 

2; m = (t + 1)p, 
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S2= {ab, ab b-1, b, b b-1, abj , ab−j}, (2 ≤j < m
2

 ), (m, 

j)= p > 2; m = (t + 1)p. 
 
(48): G = Z2 ×Z8 = <a>×<b>,  
S1= {ab, ab−1, b, b−1, b3, b−3},  
S2= {ab, ab−1, b, b−1, ab3, ab−3}. 
 
(49): G = Z2m × Zn = <a> × <b> (m≥ 2, n≥3),  
S = {a, a−1, amb, amb−1, b, b−1}. 
 
(50): G = Z2m ×Z2n = <a>×<b> (m≥ 3, n≥2),  
S = {a, a−1, am+1bn, am−1bn, b, b-1}. 
 
(51): G = Z6m= <a> (m≥ 2), S1= {a, a−1, a3, a−3, a3m+1, 
a3m−1}, 
S2= {a, a−1, a3m+1, a3m−1, a3m+3, a3m−3}. 
 
(52): G = Zm = <a> (m = 7, 14), S = {a, a−1, a3, a−3, a5, 
a−5}. 
 
(53): G = Z3m = <a> (m≥ 3),  
S = {a, a−1, am−1, am+1, a2m−1, a2m+1}. 
 
(54): G = Z16m-4 = <a> (m≥ 1),  
S = {a, a−1, a4m−2, a12m−2, a8m−3, a8m−1}. 
 
(55): G = Z16m+4 = <a> (m≥ 1),  
S = {a, a−1, a4m+2, a12m+2, a8m+1, a8m+3}. 
 
(56): G = Z3 × Z3 = <a> × <b>,  
S = {a, a2, b, b2, a2b, ab2}. 
 
(57): G = Z2× Z4 × Z4  = <a> × <b>× <c> ,  
S = {a, b, b-1, c, c-1, ab2 c2}. 

 
2. Primary Analysis 

Proposition 2.1 [9, Proposition 1.5] Let Γ = Cay (G, S) 
be a Cayley graph of G over S, and A = Aut(Γ). Let A1 
be the stabilizer of the identity element 1 in A. 
Then Γ is normal if and only if every element of A1 is 
an automorphism of G. 
Proposition 2.2 [6, Theorem 1.1] Let G be a finite 
abelian group and S be a generating subset of G − 1G. 
Assume S satisfies the condition that, if s, t, u, v∈S 
with 1 st = uv, implies {s, t} = {u, v}. Then the 
Cayley graph Cay (G, S) is normal. 

≠
 
Let X and Y be two graphs. The direct product X×Y is 
defined as the graph with vertex set V (X ×Y) = V 
(X)×V (Y) such that for any two vertices u = [x1, y1] 
and v = [x2, y2] in V (X ×Y), [u, v] is an edge in X ×Y, 
whenever x1 = x2 and [y1, y2] ∈E(Y ) or y1 = y2 and 
[x1, x2] ∈E(X). Two graphs are called relatively prime 
if they have no nontrivial common direct factor. The 
lexicographic product X[Y] is defined as the graph 
vertex set V (X[Y]) = V (X) × V (Y) such that for any 
two vertices u = [x1, y1] and v = [x2, y2] in V (X[Y]), 
[u, v] is an edge in X[Y] whenever [x1, x2] ∈  E(X) or 
x1 = x2 and [y1, y2] ∈E(Y).  
 

Let V(Y) = {y1, y2, ..., yn}. Then there is a natural 
embedding nX in X[Y], where for 1 ≤i ≤ n, the ith copy 
of X is the subgraph induced on the vertex subset {(x, 
yi)|x ∈ V(X)} in X[Y]. The deleted lexicographic 
product X[Y] − nX is the graph obtained by deleting 
all the edges of (this natural embedding of) nX from 
X[Y]. Let Γ be a graph and α a permutation V (Γ) and 
Cn a circuit of length n. The twisted product Γ ×α Cn of 
Γ by Cn with respect to α is defined by; 
 
V (Γ × α Cn) = V (Γ) × V (Cn) = {(x, i) | x ∈  V (Γ), i = 
0, 1, ... , n − 1}, 
E(Γ× α Cn) = {[(x, i), (x, i+1)] |x ∈V (Γ), i = 0, 1, ..., 
n−2}∪ {[(x, n−1), ( xα ,0)] |x ∈  V (Γ)} [ {[(x, i), (y, 
i)]|[x, y] ∈  E(Γ), i = 0, 1, ..., n − 1}. 
 

The graph  denotes the graph obtained by 
connecting all long diagonals of 4-cube Q4, that is, 
connecting all vertices u and v in Q4 such that d(u, v) = 
4. The graph Km,m  × c Cn is the twisted product of Km,m 
by Cn such that c is a cycle permutation on each part of 
the complete bipartite graph Km,m. The graph Q3 × d Cn 
is the twisted product of Q3 by Cn such that d 
transposes each pair of elements on long diagonals of 

Q3. The graph [2K1] is defined by:  

d
4Q

d
2mc

 

V(  [2K1]) = V (C2m[2K1]), 
d
2mc

 

E( [2K1]) = E(C2m[2K1]) {[(xi, yj), (xi+m, yj)] | i= 
0, 1, ..., m − 1, j = 1, 2}, where V (C2m) = {x0, x1, ..., 
x2m−1} and V(2K1) = {y1, y2}. 

d
2mc ∪

Let G = G1×G2 be the direct product of two finite 
groups G1 and G2, let S1 and S2 be subsets of G1 and 
G2, respectively, and let S = S1 S2 be the disjoint 
union of two subsets S1and S2. Then we have, 

∪

 
Lemma 2.3 
(1) Cay (G, S)≅ Cay (G1, S1)×Cay (G2, S2). 
(2) If Cay (G, S) is normal, then Cay (G1, S1) is also 
normal. 
(3) If both of Cay (G1, S1) and Cay (G2, S2) are normal 
and relatively prime, then Cay (G, S) is normal. 
 

3. Proof of the Main Theorem 
In this section, Γ always denotes the Cayley graph 
Cay(G, S) of an abelian group G on S with valency 6. 
Let A = Aut(Γ). Then A1 and A1

* denote the stabilizer 
of 1 in A and the subgroup of A which fixes {1} S, 
pointwise, respectively. In order to prove Theorem 1.1 
we need several lemmas. 

∪

 
Lemma 3.1 Let G = Z2m = <a>, (m≥ 5) , and  S ={ai, 

a−i, am+i, am−i, a, a−1} 2 ≤ i < m
2

. Then Γ = Cay (G, S) 

is normal . 
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Proof Let Γ2(1) be the subgraph of Γ with vertex set 
{1} S∪ S2

 and edge set {[1,s], [s, st] | s,t∈S}. By 
observing the subgraph Γ2(1), it is easy to prove that 
A1

* fixes S2
 pointwise, which implies that A1

*= 1. Thus 
A1 acts faithfully on S. Observing the subgraph Γ2(1) 
again, A1, as a permutation group on S, is generated by 
(a, a−1)(am+i, am−i). So |A1| = 2 and Γ = Cay(G, S) is 
normal. 

∪

 

Lemma 3.2: Let G =  × Zm= <a> × <b> × <c>, m = 
4k, k ≥2 and S = {a, b, ck, c3k, c, c-1}. Then Γ = Cay (G, 
S) is normal. 

2

2z

Proof Set G1 = <a,b>, G2 = <c>, S1= {a, b}, S2= {ck, 
c3k, c, c-1}. Then Γ1 = Cay (G1, S1)  K2×K2. Note that 
Γ1 and Γ2 = Cay (G2, S2) are relatively prime. By [5, 
Theorem 1.1] and [6, Theorem 1.2], Γ1 and Γ2 are 
normal and by Lemma 2.3, Γ = Cay (G, S) is normal.  

≅

 
With similar arguments as in Lemmas 3.1 and 3.2, we 
have the following lemma. 
 

Lemma 3.3 Let G and S be as the following. Then the 
Cayley graphs Γ = Cay (G, S) are normal. 
(1): G = = <a> × <b> × <c> × <d>,  4

2z
S = {a, b, c, d, ad, abc}. 
 

(2): G = × Z6 = <a> × <b> × <c>,  2

2z
S = {a, b, ac3, c3, c, c−1}. 
 

(3): G = × Z2m = <a> × <b> × <c> (m ≥ 2),  2

2z
S = {a, b, abcm, cm, c, c-1}. 
 
(4): G = Z2 × Z6m = <a> × <b> (m ≥ 2),  
S = {a, abm, ab3m, ab5m, b, b−1}. 
 
(5): G = Z2 × Z6m = <a> × <b> (m ≥ 2),  
S = {a, bm, b3m, b5m, b, b−1}. 
 
(6): G = Z6 × Z2m = <a> × <b> (m ≥ 3),  
S = {a, a−1, a3, a3bm, b, b−1}. 
 
(7): G = Z2 × Z2m = <a> × <b>,  
S1= {a, ab2, ab−2, bm, b, b−1}, (m ≥ 4), 
S2= {a, abm+2, abm−2, abm, b, b−1},   (m ≥ 5),  
S3 = {a, bm+2, bm−2, bm, b, b−1}, (m = 4, m ≥ 6). 
 
(8): G = Z2 × Z4m+2 = <a> × <b>, 
S1= {a, abm, ab3m+2, b2m+1, b, b−1},         
(m ≥ 2), S2={a,b, b−1, bm, b3m+2, b2m+1}, (m ≥ 2),  
S3 = {a, abm+1, ab3m+1, b2m+1, b, b−1}, (m ≥ 2),  
S4= {a, b, b−1, bm+1, b3m+1, b2m+1}, (m ≥ 3). 
 
(9): G = Z4 × Z4m+2 = <a> × <b> (m ≥ 1), 
S1= {a2b2m+1, b2m+1, abm, a3b3m+2, b, b−1},  
S2= {a2, a2b2m+1, abm, a3b3m+2, b, b−1}. 
 

(10): G =  × Zm = <a> × <b> × <c>, (m ≥ 4,m 2

2z ≠  6),  
S = {a, b, c, c−1, ac2, ac−2}. 
 

(11): G = Z2 × Z4m = <a> × <b> (m ≥ 2),  

S1= {a, abm, ab3m, b2m, b, b−1}, 
S2= {a, b, b−1, bm, b3m, b2m},  
S3 = {a, ab2m, bm, b3m, b, b−1}. 
 
(12): G = Z4 × Z2m = <a> × <b> (m ≥ 3),  
S = {a2, a2bm, a, a−1, b, b−1}. 
 

(13): G = × Z4m = <a> × <b> × <c> (m ≥ 2),  2

2z
S1= {a, b, abcm, abc3m, c, c−1}, S2= {a, b, acm, ac3m, c, 
c−1},  
S3 = {a, b, cm, c3m, c, c−1},  
S4 = {a, c2m, bcm, bc3m, c, c−1}. 
 

(14): G = × Z4m = <a> × <b> × <c> × <d> (m ≥ 2),  3

2z
S = {a, b, cdm, cd3m, d, d−1}. 
 

(15): G = × Zm = <a> × <b> × <c> (m = 7, 9, m ≥ 
11),  

2

2z

S = {a, b, c, c−1, c3, c−3}. 
 

(16): G = Z2× Z4× Z4m+2 = <a>×<b>×<c> (m ≥ 1),  
S = {a, b2c2m+1, bcm, b3c3m+2, c, c−1

}. 
 

(17): G = × Z4m+2 = <a> × <b> × <c> (m ≥ 2),  2

2z
S = {a, c2m+1, bcm, bc3m+2, c, c−1}. 
 
(18): G = Z2× Z4 × Z2m = <a> × <b> × <c> (m ≥ 3),  
S = {a, acm, b, b−1, c, c−1}. 
 

(19): G = Z2 × Z2m = <a> × <b> (m ≥ 6),  
S1= {a, bm, b, b−1, b3, b−3},  
S2={a, abm, b, b−1, b3,b−3 }. 
 
(20): G = Z4m × Zn = <a> × <b> (m ≥ 2, n ≥ 3), 
S = {a, a−1, am, a3m, b, b−1}. 
 
(21): G = Z4m × Z4n = <a> × <b> × <c> (m, n ≠  4),  
S = {a, a−1, b, b−1, c, c−1}. 
 

(22): G = Z4 × Zm × Zn = <a> × <b> × <c> (m, n ≠  3),  
S = {a, a3, b, b−1, c, c−1}. 
 
(23): G = Z2m (m ≥ 5),  

S = {a, a−1, aj , a−j , am+j , am−j} (2 ≤ j < m
2

 ). 

(24): G = Zm× Zn = <a>×<b> (m = 7, 9, m ≥ 11, n ≥ 3),  
S = {a, a−1, a3, a−3, b, b−1}. 
 
(25): G = Z3m-1× Z3n = <a>×<b> (m ≥ 2, n ≥ 1),  
S = {a, a−1, b, b−1, ambn, a2m−1b2n}. 
 
(26): G = Z3m+1 × Z3n = <a> × <b> (m, n ≥ 1),  
S = {a, a−1, b, b−1, amb2n, a2m+1bn}. 
 
(27): G = Zm × Zn = <a> × <b> (m ≥ 5, n ≥ 3),  
S = {a, a−1, b, b−1, a2b, a−2b−1}. 
 
(28): G = Z2m+1 × Zn = <a> × <b> (m, n ≥ 3),  
S = {a, a−1, am, am+1, b, b−1}. 
 
(29): G = Z2m+1 × Z2n+1 = <a>×<b> (m, n ≥ 2),  
S = {a, a−1, b, b−1, ambn+1, am+1bn}. 

 [
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(30): G = Z2× Z2n+1× Z2m+1 = <a>×<b>×<c> (m, n ≥ 1),  
S = {abmcn+1, abm+1cn, b, b−1, c, c−1}. 
 
(31): G = Z4m = <a> (m ≥ 2),  
S = {a, a−1, ak, a−k, am, a−m}, (1 < k < 2m, k m, 2m−1. ≠
 

(32): G = Z4×Zm = <a>×<b> (m ≥ 3),  

S = {a, a−1, b, b−1, abj , a−1b−j}, 1 ≤ j ≤ m
2

⎢ ⎥
⎢ ⎥⎣ ⎦

,  

(When m ≠  2k for every j or m = 2k, j  k ). ≠
 
(33): G = Z4 × Z2m = <a> × <b> (m ≥ 2),  
S = {a, a−1, b, b−1, a2bj , a2b−j} 1 ≤ j < m  
(for every j  1,m - 1 ). ≠
 

(34): G = Z4 × Z2m-1 = <a> × <b> (m ≥ 2),  

S = {a, a−1, b, b−1, a2bj , a2b−j} (1 < j < 2m 1
2
− ). 

 

(35): G = Z4 × Zm = <a> × <b> (m ≥ 5),  

S = {a, a−1, b, b−1, bj , b−j} (1 < j < m
2

), 

when m  2k, 5 or m = 2k (k ≥ 3, k  5), j ≠ ≠ ≠  k − 1 
or m = 10, j 3. ≠
 
(36): G = Z2m = <a> (m ≥ 4),  
S = {a, a−1, aj , a−j , am+1, am−1} (2 ≤ j ≤ m- 2), 
when (m, j) = 1 or (m, j) = 2,m≠ 4i + 2 (i ≥ 1). 
 
(37): G = Z2 × Zm = <a> × <b> (m ≥ 5,m  8),  ≠
S1= {ab, ab−1, b, b−1, bj , b−j},  

S2= {ab, ab−1, b, b−1, abj , ab−j} (2 ≤ j < m
2

), when  

(m, j) = p  ≤  2. 
 

(38): G = Z2×Z8 = <a>×<b>,  
S1= {ab, ab7, b, b7, b2, b6},  
S2 = {ab, ab7, b, b7, ab2, ab6}. 
 
(39): G = Zm = <a> (m ≥ 9,m ≠  14),  

S = {a, a−1, a3, a−3, aj , a−j} j  3, 2 ≤ j < ≠ m
2

) when  

m 6k, j or m = 6k, j 3k − 1. ≠ ∀ ≠
(40): G = Z14 = <a>,  
S = {a, a−1, a3, a−3, aj , a−j} for j = 2, 4, 6. 
 

(41): G = Zm = <a> (m ≥ 7),  

S = {a, a−1, a3j , a−3j , aj , a−j}, (2 ≤ j < m
2

 , 3j ≡  0, 1, 

m − 1, j, m − j, m
2

 ( mod m ) ) , when m  7, 14, 6k 

(k ≥ 2) and m = 7; j = 2 or m = 14; j = 2, 3, 4, 6 or m = 
6k; j  3k − 1. 

≠

≠
 
(42): G = Zm = <a> (m ≥ 8,m ≠  14),  
S = {a, a−1, a2+j , a−2−j , aj , a−j} (if m = 2k then 2 ≤ j ≤ 
m
2

-3 and if m = 2k +1 then 2 ≤ j ≤ m
2

-1). When m ≠  

3k for every j and when m = 3k, for k odd ; j ≠  k − 1 

and for k even ; j  k − 1, ≠ k3
2

- 3. 

(43): G = Z14 = <a>,  
S = {a, a−1, a2+j , a−2−j , aj , a−j} for j = 2, 4. 
 
(44): G = Z2 × Z4 × Z2m = <a> × <b> × <c> (m ≥ 3),  
S = {a, ab2cm, b, b−1, c, c−1}. 
 
Now we are in a position to prove Theorem 1.1. 
Immediately from Lemma 2.3, [5, Theorem 1.1] and 
[6, Theorem 1.2], we have the Cases (1)-(32) of 
Theorem 1.1. Assume that Γ is not normal. In view of 
Proposition 2.2, we have the following assumption:  
∃ s, t, u, v∈S such that st = ub ≠  1 but {s, t}≠ {u, 
v}. (*). 
We divide S into four cases: 
 
Case 1: S = {a, b, c, d, e, f}, where a, b, c, d, e, f are 
involutions. In this case G is an elementary abelian 2-
group and a, b, c, d, e, f are not independent by the 
assumption (*). Consequently G =   or G =  or G 

= . If G =  = <a>×<b>×<c> by the assumption 
(*) we can let S = {a, b, c, ab, ac, abc}. We have σ = 
(a, abc) 

3

2z 4

2z
5

2z 3

2z

∈  A1, but σ ∉  Aut(G, S); and by Proposition 
2.1 , Γ = Cay(G, S) is not normal , the Case (33) of 
Theorem 1.1. If G =  = <a> × <b> × <c> × <d> by 
the assumption (*) we see that S is one of the following 
cases: 

2

4z

(i) S1= {a, b, c, d, abc, abd}, (ii) S2= {a, b, c, d, ab, 
abc},  
(iii) S3= {a, b, c, d, abc, abc}. 
 
When S = S1, σ = (a, b) ∈  A1 , but σ ∉  Aut(G, S); by 
Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 
(34) of Theorem 1.1. When S = S2, we have the Case 
(22) of the main theorem. Also when S = S3, Γ is 
normal by Lemma 3.3. If G =  = <a> × <b> × <c> 
× <d> × <e> we can let S = {a, b, c, d, e, abc} and 
hence Γ = Cay (G, S) is non-normal, the Case (1) of 
Theorem 1.1. 

5

2z

Case 2: S = {a, b, c, d, e, e−1}, where a, b, c, d are 
involutions but e is not. In this case, S2- 1 = {ab, ac, ad, 
ae, ae−1, bc, bd, be, be−1, cd, ce, ce−1, de, de−1, e2, e−2}. 
By the assumption (*) d = abc, o(e) = 4 or d = e3. 
Suppose d = abc. Then G =  × Z2m ,(m≥ 2) or  2

2z
G =  × Zm, (m≥ 3). 3

2z
If G =  × Z2m = <a>×<b>×<c>, (m≥ 2), we can let  2

2z
S = {a, b, acm, bcm, c, c−1} or 
S = {a, b, cm, abcm, c, c−1}.  
When  S = {a, b, acm, bcm, c, c−1}, 
σ = (ab, abcm)(abc, abcm+1)...(abcm−1, abc2m−1) ∈  A1, 
but σ ∉  Aut(G, S); by Proposition 2.1, Γ = Cay(G, S) 
is not normal, the Case (35) of the main theorem.  
When S = {a, b, cm, abcm, c, c−1}, Γ = Cay(G, S) is 
normal by Lemma 3.3(3). If G =  × Zm = <a> × <b> 
× <c> × <d>, (m≥ 3), S = {a, b, c, abc, d, d−1}, the 
Case (2) of Theorem 1.1. Suppose o(e) = 4. Then G = 

3

2z
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2

2z  × Z4,  × Z4 or  × Z4. If G =  × Z4= <a> × 
<b> × <c>, we have S is one of the following cases: 

3

2z 4

2z 2

2z

S1= {a, b, ab, ac2, c, c-1}, S2= {a, b, ae2, bc2, c, c−1},  
S3= {a, b, ac2, abc2, c, c-1}. 
S4= {a, b, ab, c2, c, c-1},  
S5= {a, b, ac2, c2, c, c-1},  
S6= {a, b, abc2, c2, c, c-1}. 
 
When S = S1, σ = (ac2, c)(ac, c2)(bc, abc2)(abc, bc2) ∈  
A1, but σ ∉  Aut(G, S); by Proposition 2.1, Γ = Cay(G, 
S) is not normal, the Case (36 − S1) of Theorem 1.1 . 
When S = S2, by Proposition 2.1, Γ = Cay (G, S) is not 
normal, the Case (35, m = 2) of Theorem 1.1. When S 
= S3, σ = (a, c)(ab, bc)(c2, ac3)(bc3, abc3)∈A1, but σ ∉  
Aut(G, S); by Proposition 2.4, Γ = Cay(G, S) is not 
normal the Case (36 − S2) of Theorem 1.1. When S = 
S4, we have the Case (3) of Theorem 1.1. When S = S5, 
we have the Case (23) of Theorem 1.1. When S = S6, Γ 
is normal by Lemma 3.3 (3, m=2) .If G =  × Z4= 
<a> × <b> × <c> × <d>, we have S = {a, b, c, d, d−1, 
u}, where u = d2, ab, ad2, abc, abd2 or abcd2. When u = 
d2, we have the Case (5− S1) of Theorem 1.1. When u 
= ab, we have the Case (5 − S2) of Theorem 1.1. When 
u = ad2, we have the Case (5 − S3) of Theorem 1.1. 
When u = abc, we have the Case (2) of Theorem 1.1. 
When u = abd2, we have the Case (24) of Theorem 1.1. 
When u = abcd2, σ = (abcd2, d)(bcd2, ad)(acd2, 
bd)(abd2, cd) (abcd, d2)(cd2, abd)(bd2, acd) and (bcd, 
ad2) ∈  A1, but σ ∉  Aut(G, S); by Proposition 2.1, Γ = 
Cay(G, S) is not normal, the Case (37) of Theorem 1.1. 
If G =  = <a>×<b>×<c>×<d>×<e>, S = {a, b, c, d, 
e, e−1}, we have the Case (4) of Theorem 1.1. Now 
suppose d = e3. Then G = × Z6 or G = × Z6.  If G 

= z ×Z6= <a> × <b> × <c>, we see that S is one of 
the following cases: S1= {a, b, ab, c3, c, c-1}, S2= {a, b, 
ac3, c3, c, c−1}, S3= {a, b, abc3, c3, c, c-1}. 

3

2z

4

2z

2

2z 3

2z
2

2

When S = S1, we have the Case (6) of Theorem 1.1. 
For S2 and S3, we have the Cases (2) and (3, m = 3) of 
Lemma 3.3 respectively. If G =  × Z6 = 
<a>×<b>×<c>×<d>, then S = {a, b, c, d3, d, d−1}, the 
Case (7) of Theorem 1.1. 

3

2z

 
Case 3: S = {a, b, c, c-1, d, d−1}, where a, b are 
involutions but c, d are not. By the assumption (*) and 
the symmetry of c, c−1, d and d−1, we have five sub 
cases (I) a = c3, (II) a = c2d, (III) o(c) = 4, (IV ) c3 = d 
and (V ) c2 = d2. Suppose a = c3, then G is isomorphic 
to one of the following: Z2× Z6m (m≥ 2), Z2× Z6, Z6× 
Z2m (m≥ 2),  × Z3m (m≥ 1), Z2× Z6× Zm (m≥ 3). If 
Z2× Z6m = <a>×<b>, (m≥ 2), we see that S is one of the 
following cases:  

2

2z

S1= {a, b3m, ab2m, ab4m, b, b−1}, S2= {a, ab3m, abm, ab5m, 
b, b−1}, S3= {a, b3m, bm, b5m, b, b−1}. When S = S1, σ = 
(a, ab2m, ab4m)(ab, ab2m+1, ab4m+1)...(ab2m−1, 
ab4m−1,ab6m−1)  A1, but σ  Aut(G, S); by 

Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 
(38) of the main theorem. For the Cases S = S2 and S = 
S3, we have the Cases (4) and (5) of Lemma 3.3.  If G 
= Z2× Z6= <a> × <b>, we see that S is one of the 
following cases: 

∈ ∉

 
S1 = {a, b3, ab2, ab4, b, b−1}, S2= {a, b3, b, b−1, b2, b4},  
S3= {a, b3, b, b−1, ab, ab−1}. 
When S = S1, σ = (a, ab2, ab4)(ab, ab3, ab5) ∈A1, but σ 
∉  Aut(G, S); by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case (43 − S5) of Theorem 1.1. When S = 
S2, we have the Case (29, m=3) of Theorem 1.1. When 
S = S3, σ = (b5, ab5)(b2, ab2) ∈A1, but σ ∉  Aut(G, S); 
by Proposition 2.1, Γ= Cay(G, S) is not normal, the 
Case (43 − S1) of Theorem 1.1. If G = Z6× Z2m = <a> × 
<b>, we see that S is one of the following cases: 
 
S1= {a3, bm, a, a−1, b, b−1}, S2= {a3, a3bm, a, a−1, b, b−1}. 
When S =, by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case (8) of Theorem 1.1.  
For S = S2, when m = 2, σ = (b2, a3b)(ab2, a4b)(a2b2, 
a5b)(a3b2, b) (a4b2, ab)(a5b2, a2b) ∈  A1, but σ ∉  Aut(G, 
S); Γ = Cay(G, S) is not normal, the Case (40, m=3) of 
Theorem 1.1, and when m≥ 3, Γ = Cay(G, S) is normal 
by Lemma 3.3(6). If G =  × Z3m =<a>×<b>×<c> 
(m≥ 1), S = {a, b, acm, ac2m, c, c−1}. Then we obtain 
the Case (25) of Theorem 1.1. If G = Z2× Z6 × Zm = 
<a>×<b>×<c> (m≥ 3), S = {b3, a, b, b−1, c, c−1}. Then 
we obtain the Case (9) of Theorem 1.1. Suppose a = 
c2d. Then we have one of the following cases:  

2

2z

(1): G = Z2× Z2m = <a> × <b> (m≥ 3),  
S = {a, bm, b, b−1, ab−2, ab2}. 
 
(2): G = Z2× Z2m = <a> × <b>, 
S1= {abm, a, b, b−1, abm−2, abm+2} (m≥ 3),  
S2= {bm, a, b, b−1, bm−2, bm+2}, m≥ 4, 
 
(3): G = Z2× Z4m+2 = <a> × <b>,  
S1 = {a, b, b−1, b2m+1, abm, ab3m+2} (m≥ 1), 
S2= {a, b, b−1, b2m+1, bm, b3m+2}, m≥ 2  
S3= {a, b, b−1, b2m+1, b3m+1, bm+1} (m≥ 1), 
S4= {a, b2m+1, ab3m+1, abm+1, b, b−1}, m≥ 1, 
 
(4): G = Z4 × Z4m+2 = <a> × <b>,  
S1= {a2b2m+1, b2m+1, abm, a3b3m+2, b, b−1}, m≥ 1 
S2= {a2b2m+1, a2, abm, a3b3m+2, b, b−1}, m≥ 1. 
 

(5): G =   ×Zm  = <a> × <b> × <c> (m≥ 3),  2

2z
S = {a, b, c, c−1, ac−2, ac2}. 
 
(6): G = Z2×Z4×Z4m+2 = <a>×<b>×<c> (m≥ 1),  
S = {a, b2c2m+1, bcm, b−1c−m, c, c−1}. 
 

(7): G =    × Z4m+2 = <a> × <b> × <c> (m≥ 1),  2

2z
S = {a, c2m+1, bcm, bc−m, c, c-1}. 
 

In the Case (1), when m = 3, σ = (b2, b4) ∈  A1, but σ 
∉  Aut(G, S); by Proposition 2.1, Γ = Cay(G, S) is not 
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normal, the Case (43− S5, m = 3) of Theorem 1.1. 
When m≥ 4,  Γ is normal by Lemma 3.3(7− S1).  
In the Case (2), S = S1 when m = 3, σ = (b2, ab2)(b5, 
ab5) ∈  A1, but σ ∉  Aut(G, S); by Proposition 2.1, Γ = 
Cay(G, S) is not normal, the Case (43− S2) of Theorem 
1.1.  
 

When m = 4, σ = (b, b7)(b2, b6)(b3, b7) ∈A1, but σ ∉  
Aut(G, S); by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case 39 (m = 2) of Theorem 1.1. When m≥ 
5, Γ = Cay(G, S) is normal by Lemma 3.3 (7− S2). In 
the Case (2), S = S2, when m = 5, we have the Case 
(26) of Theorem 1.1. When m≥ 6,  Γ is normal by 
Lemma 3.3 (7− S3).  
 

In the Case (3), S = S1, when m = 1, we have the Case 
(43 − S1) of Theorem 1.1. When m≥ 2,  Γ is normal by 
Lemma 3.3 (8 − S1). In the Case (3), S = S2, Γ is 
normal by Lemma 3.3 (8 − S2). In the Case (3), S = S3, 
when m = 1, 2, we have the Cases (29,m = 3, 5) of 
Theorem 1.1 respectively. When m≥ 3,  Γ is normal by 
Lemma 3.3(8 − S4). In the Case (3), S = S4, when m= 
1, σ = (ab, ab5)  A1, but σ  Aut(G, S); by 
Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 
(29,m = 3) of Theorem 1.1. When m≥ 2, Γ = Cay (G, 
S) is normal by Lemma 3.3(8 − S3). In the Case (4), Γ 
= Cay (G, S) is normal by Lemma 3.3(9). In the Case 
(5), when m = 3, 6, by Proposition 2.1, Γ is not normal, 
the Case (25, m = 1, 2) of Theorem 1.1. Otherwise Γ is 
normal by Lemma 3.3(10). In the Case (6), Γ is normal 
by Lemma 3.3(16). In the Case (7), when m = 1, by 
Proposition 2.1, Γ is not normal, the Case 27 (m = 1) of 
Theorem 1.1. When m≥ 2,  Γ is normal by Lemma 3.3 
(17). Suppose o(c) = 4. Then we have one of the 
following cases: 

∈ ∉

(I) G = Z2× Z4 = <a> × <b>, S1= {a, b2, b, b−1, ab, 
ab−1}, 
 
(II) G = Z2 × Z4m = <a> × <b>, S1= {a, b2m, abm, ab3m, 
b, b−1}, (m≥ 2), S2={a, ab2m, abm, ab3m, b, b−1}, (m≥ 1), 
S3= {a, b2m, bm, b3m, b, b−1}, (m≥ 2),  
S4= {a, ab2m, bm, b3m, b, b−1}, (m≥ 2).  
 

(III) G = Z4 × Z2m = <a> × <b> (m≥ 2),  
S1= {a2, bm, a, a−1, b, b−1}, S2= 
{a2, a2bm, a, a−1, b, b−1}, S3 = {a2bm, bm, a, a−1, b, b−1}. 
 

(IV): G = ×Z4 = <a>×<b>×<c>,  2

2z
S1= {a, b, c, c-1, ac, ac−1}, S2= {a, b, c, c-1, abc, abc-1}. 
(V): G =  × Z4m = <a> × <b> × <c> (m≥ 2), 2

2z
S1= {a, b, abcm, abc3m, c, c-1}, S2= {a, b, acm, ac3m, c, c-

1}, S3= {a, b, cm, c3m, c, c−1}. 
 
(VI): G = Z2× Z4 × Zm = <a> × <b> × <c> (m≥ 3),  
S1= {a, b2, b, b−1, c, c-1}, 
S2 = {a, ab2, b, b−1, c, c-1}. 
 
(VII): G = Z2×Z4× Z2m = <a>×<b>×<c> (m≥ 2),  
S1= {a, cm, b, b−1, c, c-1}, S2 = {a, acm, b, b−1, c, c-1},  
S3= {a, b2cm, b, b−1, c, c-1}, S4= {a, ab2cm, b, b−1, c, 
c−1}. 
 

(VIII): G = × Z4m = <a> × <b> × <c> (m≥ 1), 2

2z
S1= {a, c2m, bcm, bc3m, c, c-1},  
S2 = {a, ac2m, bcm, bc3m, c, c1}. 
 
(IX): G =  × Z4 × = <a> × <b> × <c> × <d> (m≥ 3),  2

2z
S = {a, b, c, c-1, d, d−1}. 
 
(X): G = × Z4m = <a> × <b> × <c> × <d> (m≥ 1),  3

2z
S = {a, b, cdm, cd3m, d, d−1}. 
 
In the Case (I), σ = (ab, b3) ∈  A1, but σ ∉  Aut(G, S); 
by Proposition 2.1, Γ = Cay(G, S) is not normal, the 
Case (43 − S1) of Theorem 1.1. In the Case (II), S = S1, 
Γ = Cay(G, S) is normal by Lemma 3.3(11 − S1). In the 
Case (II), S = S2, σ = (b, b−1)(b2, b−2)...(b2m−1, b2m+1)(a, 
abm)...(ab2m+1, ab−(m+1))  ∈A1, but σ ∉  Aut(G, S); by 
Proposition 2.1, Γ = Cay(G, S) is not normal , the Case 
(39) of Theorem 1.1. In the Case (II), S = S3, and S = 
S4, Γ is normal by Lemma 3.3, the Case (11 − S2, S3). 
In the Case (III), when S = S1, we have the Case (10) 
of Theorem 1.1. When S = S2, m = 2, σ = (a2b2, b)(a3b2, 
ab)(ab2, a3b)(b2, a2b) ∈ A1, but σ  Aut(G, S), by 
Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 
(40, m = 2) of Theorem 1.1. When S = S2, m≥ 3, Γ = 
Cay(G, S) is normal by Lemma 3.3(12). When S = S3, 
σ = (a2, abm)(a2b, abm+1)...(a2b2m−1, abm+(2m−1)) 

∉

∈A1 but 
σ ∉  Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is 
not normal , the Case (40) of Theorem 1.1.  
 

In the Case (IV ), when S = S1, σ = (c2, ac2)(bc2, abc2) 
∈  A1,but σ ∉  Aut(G, S), by Proposition 2.1, Γ = 
Cay(G, S) is not normal, the Case (44− S2) of Theorem 
1.1. When S = S2, σ = (ac2, bc2) ∈  A1, but σ ∉  Aut(G, 
S), by Proposition 2.1, Γ = Cay(G, S) is not normal, the 
Case (44− S3) of Theorem 1.1. In the Case (V ), S = S1, 
when m = 1, with an argument similar to the Case (IV 
− S2) we obtain the same result. When m≥ 2,  Γ is 
normal by Lemma 3.3 (13− S1). In the Case (V), S = 
S2, when m = 1, with an argument similar to the Case 
(IV−S1), we obtain the same result.  
 

When m≥ 2,  Γ is normal by Lemma 3.3 (13 − S2). In 
the Case (V ), S = S3, Γ is normal by Lemma 3.3(13− 
S3). In the Case (VI), we have the Case (11) of 
Theorem 1.1. In the Case (VII), S = S1, S = S3 and S = 
S2 (m = 2), we have the Cases (12), (28) and (11 − S2, 
m = 4) of Theorem 1.1 respectively. In the Case (VII), 
S = S2, m≥ 3, Γ is normal by Lemma 3.3(18). In the 
Case (VII), S = S4, for m = 2, σ = (b3, c)(ab3, ac)(abc2, 
ab2c3)(b2, bc)(b3c3, c2)(b2c, b2c3)(ab2, abc)(ab3c3, ac2) 
∈  A1, but σ ∉  Aut(G, S), by Proposition 2.1, Γ = 
Cay(G, S) is not normal, the Case (57) of Theorem 1.1, 
and for m≥ 3, Γ is normal by Lemma 3.3(44). In the 
Case (VIII), S = S1 when m = 1, we have the Case (21, 
m = 2) of Theorem 1.1. If m≥ 2,  Γ is normal by 
Lemma 3.3 (13 − S4). In the Case (VIII), S = S2, σ = 
(ab, abc2m)(abc, abc2m+1)...(abc2m−1, abc4m−1) ∈  A1, but 
σ ∉  Aut(G, S); by Proposition 2.1 ,Γ = Cay(G, S) is 
not normal, the Case (41) of Theorem 1.1. In the Case 
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(IX), we have the Case (13) of Theorem 1.1. In the 
Case (X), m = 1, we have the Case (14) of Theorem 
1.1, and for m≥ 2, Γ = Cay (G, S) is normal by  Lemma 
3.3(14). Suppose c3 = d, then G= × Z2m, (m≥ 4) or 

G =  × Zm   (m≥ 5, m ≠6). If G = Z2 × Z2m = <a> × 
<b> (m≥ 4), we can let S to be 

2

2z
2

2z

S1= {a, bm, b, b−1, b3, b−3} or S2= {a, abm, b, b−1, b3, 
b−3}. Let S = S1, for m = 4, 5 we have the Cases (29), 
(26) of Theorem1.1 respectively, and for m≥ 6, Γ is 
normal by Lemma 3.3(19 − S1). Let S = S2. When m = 
4, σ = (ab2, ab6)  A1, but σ  Aut(G, S); by 
Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 
(43− S4), m = 4) of Theorem 1.1. When m = 5, σ = (b3, 
b7)(ab3, ab7)(b2, b8)(ab2, ab8)  

∈ ∉

∈A1, but σ ∉  Aut(G, S), 
by Proposition 2.1, Γ = Cay(G, S) is not normal, the 
Case (42) of Theorem 1.1. When m≥ 6, Γ = Cay (G, S) 
is normal by Lemma 3.3(19 − S2). If G =  × Zm = 
<a> × <b> × <c> (m≥ 5, m 6= 6), S = {a, b, c, c-1, c3, 
c−3}. When m = 5, 10 and m = 8 we have the Cases 
(15), and (16) of Theorem 1.1 respectively. When m = 
7, 9, m≥ 11, Γ = Cay (G, S) is normal by Lemma 
3.3(15). Suppose c2 = d2, then G = Z2 × Z2m, G =  × 

Z2m (m≥ 3) G =  × Z2m -1 (m≥ 2) or G = × Zm 
(m≥ 3). If G= Z2 × Z2m = <a> × <b> we see that S is 
one of the following cases: 

2

2z

2

2z
2

2z 2

2z

1) S1= {a, bm, b, b−1, ab, ab−1}, m≥ 2,  
 
2) S2= {a, abm, b, b−1, ab, ab−1}, m≥ 2,    
 
3)S3= {a, bm, b, b−1, bm+1, bm−1}, m≥ 3, 
 

4) S4= {a, abm, b, b−1, bm+1, bm−1}, m≥ 3,  
 
5) S5={a, bm, b, b−1, abm+1, abm−1}, m≥ 3, 
 
6) S6= {a, abm, b, b−1, abm+1, abm−1}, m≥ 3, 
 
7) S7= {abm, bm, b, b−1, ab, ab−1}, m≥ 2,  
8) S8 = {abm, bm, b, b−1, abm+1, abm−1}, m≥2. 
 
In the Case (1), m≥ 2, when m = 2i, σ = (bi, abi)(b3i, 
ab3i) ∈A1, but σ ∉  Aut(G, S) and when m = 2i + 1, σ= 
(bi+1, abi+1)(b3i+2, ab3i+2) ∈A1, but σ ∉  Aut(G, S); by 
Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 
(43 − S1) of Theorem 1.1. In the Case (2), similarly 
Case (1), Γ = Cay(G, S) is not normal, the Case (43− 
S2) of Theorem 1.1. In the Case (3), we have the Case 
(29) of Theorem 1.1. In the Case (4), when m = 2i, σ = 
(abi, ab3i) ∈  A1, but σ ∉  Aut(G, S) and when m = 2i + 
1, σ = (abi+1, ab3i+2) ∈  A1, but σ ∉  Aut(G, S), by 
Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 
(43 − S4) of Theorem 1.1. In the Case (5), when m = 
2i,σ = (b3i, abi) ∈A1, but σ ∉  Aut(G, S) and when m = 
2i+1, σ = (bi+1, ab3i+2) ∈A1,but σ ∉  Aut(G, S), by 
Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 
(43− S5) of Theorem 1.1. In the Case (6), when m = 2i, 
σ = (bi, ab3i)(b3i, abi) ∈A1,but σ ∉  Aut(G, S) and 
when m = 2i + 1, σ = (bi+1, ab3i+2)(b3i+2, abi+1) ∈  A1, 

but σ ∉  Aut(G, S). Hence by Proposition 2.1, Γ = Cay 
(G, S) is not normal, the Case (43 − S6) of Theorem 
1.1.  
 

In the Case (7), for m = 2i and m = 2i + 1, σ = (bi+1, 
abi+1) ∈A1, but σ ∉  Aut(G, S), by Proposition 2.1, Γ = 
Cay (G, S) is not normal, the Case (43 − S3) of 
Theorem 1.1. In the Case (8), for m = 2i and m = 2i − 
1, σ = (bi, abi+m)(bm+i, abi)  ∈A1, but σ ∉  Aut(G, S), 
by Proposition 2.1, Γ = Cay(G, S) is not normal, the 
Case (43 − S1) of Theorem 1.1. If G = z  × Z2m = <a> 
× <b> × <c>, we can let S to be one of the following 
cases: 

2

2

(1): S1= {a, b, c, c-1, ac, ac-1}, m≥ 2, 
(2): S2= {a, b, c, c-1, abc, abc-1}, m≥ 2,  
(3): S3= {a, b, c, c-1, cm+1, cm−1}, m≥ 3, 
(4): S4= {a, b, c, c-1, acm+1, acm−1}, m≥ 2,  
(5): S5= {a, b, c, c-1, abcm+1, abcm−1}, m≥ 2, 
(6): S6= {a, cm, c, c-1, bc, b c-1}, m≥2, 
(7): S7 = {a, acm, c, c-1, bc, bc−1}, m≥ 2, 
(8): S8 = {a, cm, c, c-1, bcm+1, bcm−1}, m≥ 2,  
(9): S9 = {a, acm, c, c-1, bcm+1, bcm−1}, m≥ 2. 
In the Case (1), Γ is not normal, the Case (30) of 
Theorem 1.1. In the Case (2),σ = (acm−1, bcm−1) ∈A1, 
but σ ∉  Aut(G, S), by Proposition 2.1 , Γ=Cay(G, S) is 
not normal, the Case (44 − S1) of Theorem 1.1. In the 
Case (3), when m = 2i, Γ = Cay (G, S) is not normal, 
the Case (16) of Theorem 1.1.  
When m = 2i+1, Γ =Cay (G, S) is not normal, we have 
the Case 14 ( with m odd ) of Theorem 1.1. In the Case 
(4), when m = 2i, i ≥2, σ = (ci, ac3i)(aci, c3i)(bci, 
abc3i)(abci, bc3i) ∈A1, but σ ∉  Aut(G, S), and when m 
=2i+1, σ = (ci+1, ac3i+2)(aci+1, c3i+2)(bci+1, abc3i+2)(abci+1, 
bc3i+2) ∈  A1, but σ ∉  Aut(G, S), by Proposition 2.1, Γ 
= Cay(G, S) is not normal, the Case (44 − S2) of 
Theorem 1.1. In the Case (5), when m = 2i, i ≥2, σ = 
(c3i, abci)(ac3i, bci)(bc3i, aci)(abc3i, ci) ∈  A1, but σ ∉  
Aut(G, S) and when m = 2i + 1, σ = (c3i+2, abci+1) 
(ac3i+2, bci+1)(bc3i+2, aci+1) (abc3i+2, ci+1) ∈  A1, but σ ∉  
Aut(G, S); by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case (44 − S3) of Theorem 1.1. In the Case 
(6), m≥ 2, Γ is not normal, we have the Case (27) of 
Theorem 1.1. In the Case (7), if m≥ 3, for m = 2i and m 
= 2i − 1, σ = (ci, bci)(aci, abci)(ci+m, bci+m) (aci+m, 
abci+m) ∈A1 , but σ ∉  Aut(G, S), and if m = 2, σ = 
(b, bc2)(ab, abc2)∈A1, but σ ∉  Aut(G, S). Then by 
Proposition 2.1, Γ = Cay (G, S) is not normal , the Case 
(44 − S4) of Theorem 1.1. In the Case (8), for m = 2i 
and m = 2i−1, σ = (ci, bci+m)(aci, abci+m)(ci+m, bci)(aci+m, 
abci)∈A1, but σ ∉  Aut(G, S), by Proposition 2.1, Γ = 
Cay(G, S) is not normal, the Case (44 − S5) of 
Theorem 1.1. In the Case (9), similarly Case (8), Γ = 
Cay(G, S) is not normal . We have the Case (44 − S6) 
of Theorem 1.1. 
If G = × Z2m-1 = <a> × <b> × <c>, (m≥ 2), then S is 
S1= {a, b, c, c-1, ac, ac-1} or S2= {a, b, c, c-1, abc,  

2

2z

abc-1}. When S = S1, σ = (cm, acm)(bcm, abcm) ∈  A1, 
but σ ∉  Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) 
is not normal , the Case (44− S7) of the main theorem .  
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When S = S2, σ = (acm−1, bcm−1) ∈A1, but σ ∉  Aut(G, 
S), by Proposition 2.1, Γ = Cay(G, S) is not normal, the 
Case (44− S1) of Theorem 1.1. If G = × Zm= 
<a>×<b>×<c>×<d>, we can consider m≥ 3, S = {a, b, 
d, d−1, cd, cd−1}. In this case for m = 2i and m = 2i−1, 
(i≥2) σ = (di, cdi)(adi, acdi)(bdibcdi)(abdi, abcdi)

2

2z

∈  A1, 
but σ ∉  Aut(G, S) and by Proposition 2.1, Γ = Cay(G, 
S) is not normal the Case (14) of Theorem 1.1. 
 
Case 4: S = {a, a−1, b, b−1, c, c-1}, where the elements 
of the set S are not involution By the assumption (*), 
o(a) = 4, a2 = b2, a3 = b or c = a2b. Suppose o(a) = 4, 
then G is isomorphic to one of the following: Z4m (m≥ 
2), Z4 × Zm, Z4m × Zn (m≥ 2, n≥3), Z4m × Z4n (m≥ 1, 
n≥1) , Z4 × Zm × Zn (m, n≥3). If G = Z4m = <a> (m≥ 2), 
we can let S = {am, a−m, a, a−1, aj , a−j}, where 1 <j <2m, 
j ≠ m. When j = 2m − 1, σ = (am, a−m) ∈  A1, but σ ∉  
Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case (45) of Theorem 1.1. When j ≠ 2m − 
1, Γ = Cay (G, S) is normal by Lemma 3.3(31). If G = 
Z4 × Zm = <a> × <b>, we can let S to be one of the 
following cases: 
(1): S1= {a, a3, b, b−1, abj , a3b−j}, m≥ 3, 1 ≤ j ≤[m/2] ,  
 
(2): S2= {a, a3, b, b−1, a2bj , a2b−j}, 
m≥ 2, 1 ≤ j ≤ (m/2) ,  
 
(3): S3= {a, a3, b, b−1, bj , b−j}, m≥ 5, 1 < j< (m/2). 
 
When S = S1, for m = 2j, σ = (a2, a2bj)(a2b, 
a2bj+1)...(a2bj−1, a2b2j−1) A1, butσ ∉  Aut(G, S), by 
Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 
(49) of the main theorem. Otherwise, Γ is normal by 
Lemma 3.3(32). When S = S2, j = 1 for m = 2k and m = 
2k − 1, k ≥ 2, σ = (abk, a3bk) 

∈

∈A1, but σ ∉  Aut(G, S), 
and when j = k − 1,m = 2k (k ≥ 3), σ = (bk−1, 
a2b−1)(abk−1, a3b−1)(a2bk−1, b−1)(a3bk−1, ab−1) ∈  A1, but 
σ ∉  Aut(G, S), then these graphs are non-normal and 
we have the Cases (49, 50 ) of Theorem 1.1. 
Otherwise, Γ = Cay (G, S) is normal by Lemma 3.3 
(33, 34). When S = S3, for j = k − 1, m = 2k, if k is odd 
we have the Case (17) of Theorem 1.1 and if k is even 
we have the Case 19 (m = 4) of the main theorem. For 
m = 5; j = 2 and m = 10; j = 3 we have the Case 21(m = 
4) of the main theorem.  
Otherwise, Γ = Cay(G, S) is normal by Lemma 3.3 
(35). If G = Z4m × Zn = <a> × <b> (m≥ 2, n≥3), S = 
{am, a−m, a, a−1, b, b−1}, then Γ = Cay (G, S) is normal 
by Lemma 3.3(20). If G = Z4m × Z4n = <a> × <b> (m≥ 
1, n≥1), S = {ambn, a−mb−n, a, a−1, b, b−1}, then Γ = 
Cay(G, S) is normal by Lemma 3.3(21).If G = Z4× Zm 
× Zn = <a>×<b>×<c> (m, n≥3), we can consider S = 
{a, a3, b, b−1, c, c-1}. In this case, for m = 4, Γ = Cay 
(G, S) is not normal, the Case (18) of Theorem 1.1, and 
for m, n ≠ 4, Γ = Cay(G, S) is normal by Lemma 
3.3(22).  Suppose a2 = b2. Then G is isomorphic to one 
of the following: Z2m, Z2× Zm (m≥ 5), Z2m × Z2n+1, Z2m 
× Z2n (m≥ 3, n≥2) , Z2  × Zn (m≥ 3, n≥3). If G = Z2m = 
<a>, we can let S to be S1= {aj , a−j , am+j , am−j , a, a−1}, 

2 ≤ j ≤ m/2, m≥ 5, or S2= {a, a−1, am+1, am−1, aj , a−j}, 2≤  
j ≤ m − 2, m≥ 4. When S = S1, Γ = Cay(G, S) is normal 
by Lemma 3.3(23). When S = S2, (m, j) =2, for m = 4i 
+ 2, j = 2i (with i odd) and j = 2i + 2 (with i even), σ 
=(a2, a2+m/2 )(a6, a6+m/2 )...(a2m−2, am/2 −2) ∈A1, but σ ∉  
Aut (G, S), and when (m, j) = l >2, then σ = (a2, 
am+2)(a2+l, am+2+l)...(am+2−l, a2−l) ∈A1, but σ ∉  Aut (G, 
S), then by Proposition 2.1 these graphs are non-
normal, and we have the Case (46) of the main 
theorem. Otherwise, Γ = Cay(G, S) is normal by 
Lemma 3.3 (36). If G = Z2 × Zm = <a> × <b> m≥ 5, we 
can let S to be S1= {b, b−1, ab, ab−1, bj , b−j}, 
2 ≥ j > m/2 or S2 = {b, b−1, ab, ab−1, abj , ab−j}, 2 ≥ j > 
m/2. Let S = S1. When (m, j) = p > 2; m = (t + 1)p, σ = 
(b, ab)(b p+1, abp+1)...(btp+1, abtp+1) ∈A1, but σ∉  Aut 
(G, S), by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case (47− S1) of the main theorem.  
When m = 8, j = 3, σ = (b2 , b6)(ab, a b7 )(a b3, a b5) ∈  
A1, but σ ∉  Aut (G, S), by Proposition 2.1, Γ = Cay(G, 
S) is not normal, the Case (48− S1) of Theorem 1.1. 
Otherwise, Γ = Cay(G, S) is normal by Lemma 3.3(37, 
38− S1). Let S = S2. When (m, j) = p > 2; m = (t + 1)p, 
σ = (b , ab)(bp+1, abp+1 )…(btp+1, abtp+1) ∈  A1, but σ ∉  
Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case (47 − S2) of Theorem 1.1. When m = 
8, j = 3, σ =(b2 , b6)(b3, b5 )(b, b7) ∈  A1, but σ ∉  
Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case(48−S2) of main theorem. Otherwise, 
Γ = Cay(G, S) is normal by Lemma 3.3(37, 38 − S2). If 
G = Z2m × Zn = <a> × <b>, we can let S to be one of 
the following cases: 
(1): S1= {a, a-1, am-1, am-1, b, b-1}, m≥ 3, 
(2): S2 = {b,b-1, amb, amb-1, a, a-1}, m≥ 2, 
(3): S3= {b, b-1, am+1bl, am-1bl, a, a-1}, n = 2l, l ≥ 2.  
 
Let S = Sl. When m = 2i, Γ = Cay(G, S) is not normal , 
the Case (19) of Theorem 1.1. When m = 2i + 1, σ = 
(am-1, a2m-1)( am-1b, a2m-1  b)…( am-1bn-1, a2m-1bn-1) ∈  A1, 
but σ ∉  Aut(G, S), by Proposition 2.4, Γ = Cay(G, S) 
is not normal, the Case 20 (with m odd) of Theorem 
1.1. Let S = S2. When n = 2j, 2j − 1 (j ≥ 2), σ = (bj, 
ambj)( abj, am+1bj)…( am-1bj, a2m-1bj) ∈  A1, but σ ∉  
Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case (49) of Theorem 1.1. When S = S3, 
σ= (am-1, a-1bl)( am-1b, a-1  bl+1)…( am-1b2l-1, a-1bl-1) ∈  
A1, but σ ∉  Aut(G, S), by Proposition 2.1, Γ = Cay(G, 
S) is not normal, the Case (50) of Theorem 1.1. If G 
=Z2 × Zm × Zn = <a> × <b> × <c>, m≥ 3, n≥3, S = {b, 
b-1, ab, ab-1, c, c-1}, we have the Case (20) of the main 
theorem. Suppose a3 = b, then we have one of the 
following cases : 
 
(1): G = Zm = <a>, m≥ 7, S1= {a, a-1, a3, a-3, aj , a-j}, 
(j≠3, 2 ≤j ≤  m/2), 
S2 = { aj , a-j , a3j , a-3j , a, a-1}, (2 ≤  j ≤  m/2, 3j ≠ 0, 
1,m − 1, j, m − j ,m/2( mod m )). 
 

(2): G = Zm × Zn = <a> × <b>, (n≥3, m≥ 5, m ≠  6),  
S = {a, a-1, a3, a-3, b, b-1}. 
 
(3): G = Z3m-1×Z3n = <a>×<b>, (m≥ 2,n≥1),  
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S = {ambn, a2m-1b2n, a3, a, a-1, b, b-1}. 
 

(4): G = Z3m+1×Z3n = <a> × <b>, (m, n≥1), S = 
{a2m+1bn, amb2n, a, a-1, b, b-1}. 
 

In the Case (1), when m = 6k, j = 3k−1, k ≥ 2, σ  = (a, 
a3k+1)(a4, a3k+4)...( a3k-2, a6k-2) ∈  A1 , but σ ∉  Aut(G, S), 
by Proposition 2.1, Γ = Cay(G, S) is not normal, the 
Case (51) of Theorem 1.1. In this case for S1, when m= 
7, j = 2, σ = (a2, a5) ∈  A1, but σ ∉  Aut(G, S), by 
Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 
(52) of Theorem 1.1. When m = 8, j = 2, σ = (a2, a6) 

A1, but σ ∉  Aut(G, S), by Proposition 2.1, Γ = 
Cay(G, S) is not normal, the Case (45) of the main 
theorem. 

∈

When m = 14; j = 5, σ = (a2, a12)(a5, a9) ∈  A1, but σ ∉  
Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case (52) of Theorem 1.1. Also for S2, 
when m = 7; j = 3, σ = (a3, a4) ∈  A1, but σ  ∉  Aut(G, 
S), by Proposition 2.1, Γ = Cay (G, S) is not normal, 
the Case (52) of Theorem 1.1. When m = 14; j = 3,σ = 
(a2, a12)( a5, a9)  A1, but σ  Aut(G, S), by 
Proposition 2.1, Γ = Cay(G, S) is not normal, the Case 
(52) of Theorem 1.1. Otherwise, Γ = Cay (G, S) is 
normal by Lemma 3.3(39, 40, 41). In the Case (2), 
when m = 5, 10 and 8 we have the Cases (21) and (19, 
m = 2) of Theorem 1.1 respectively. Otherwise, Γ = 
Cay(G, S) is normal by Lemma 3.3 (24). In the Cases 
(3) and (4), Γ = Cay (G, S) is normal by Lemma 3.3 
(25, 26). Suppose c = a2b. Then we have one of the 
following cases: 

∈ ∉

(1): G = Zm = <a> (m≥ 7), S = {a, a-1, aj , a-j , a2+j , a-2-

j}, if m = 2k, 2 ≤j≤(m/2) − 3 and if m = 2k + 1,  
2 ≤ j ≤ (m/2) − 1. 
 
(2): G = Zm = <a> (m≥ 7), S1={aj, a-j , a, a-1, a2j+1, a-2j-

1},  
2 ≤ j ≤ m − 2, j ≠ m/2 and 2j + 1 ≠ m/2, 0, 1, m −1, j, m 
− j ( mod m) 
 
(3): G = Zm  × Zn = <a> × <b> (m, n≥3),  
S = {a, a-1, b, b-1, a2b, a-2b-1}. 
 
(4): G = Z2m +1 × Zn = <a> × <b> (m≥ 2, n≥3),  
S = { am, am+1, a, a-1, b, b-1}. 
 
(5): G = Z2m +1  × Z2n+1  = <a> × <b> (m, n≥1),  
S = { ambn+1, ambn, a, a-1, b,b-1}. 
 
(6): G = Z2× Z2m+1 × Z2n+1 = <a>×<b>×<c> (m, n≥1),  
S = {abm cn+1, abm+1cn , b, b-1 , c, c-1}. 
In the Case (1), if m = 3k, k ≥ 3, j = k −1, σ  = (ak, a2k) 

 A1, but σ  Aut(G, S), by Proposition 2.1, Γ = 
Cay(G, S) is not normal, the Case (53) of Theorem 1.1. 
If m = 6k, k ≥3, j = 3k − 3, σ = (a, a3k+1)(a4, a3k+4)...(a3k-

2, a6k-2) ∈  A1, but σ ∉  Aut(G, S), by Proposition 2.1, 
Γ= Cay(G, S) is not normal, the Case (51 − S2, m≥ 3) 
of Theorem 1.1. If m = 7; j = 2, σ  = (a3, a4) ∈  A1, but 
σ ∉  Aut(G, S), and if m = 14, j = 2, σ = (a2, a12) (a5, 
a9) ∈  A1, but σ ∉  Aut(G, S), by Proposition 2.1, Γ = 
Cay(G, S) is not normal, the Case (52) of the main 
theorem.  

∈ ∉

Otherwise, Γ = Cay (G, S) is normal by Lemma 3.3(42, 
43). In the Case (2), if m = 7, j = 4, σ = (a5, a9) ∈  A1, 
but σ ∉  Aut(G, S), and if m = 14, j = 5,σ = (a2, a12)( a5, 
a9) ∈  A1, but σ ∉  Aut(G, S), by Proposition 2.1, Γ = 
Cay(G, S) is not normal, the Case (52) of Theorem 1.1. 
If m = 3k, j = k − 1, k ≥ 3, σ = (ak, a2k) ∈  A1 , but σ ∉  
Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case (53) of Theorem 1.1. If m = 4j, j ≥ 2, 
σ = (aj , a3j) ∈  A1, but σ∉Aut(G, S), by Proposition 
2.1, Γ = Cay(G, S) is not normal, the Case (45) of 
Theorem 1.1. If m = 6k, j = 3k+1, k ≥ 3, σ = (a, a3k+1)( 
a4, a3k+4)...( a3k-2, a6k-2) ∈  A1, but σ ∉  Aut(G, S), by 
Proposition 2.1, Γ= Cay(G, S) is not normal, the Case 
(51- S1) of Theorem 1.1. If m = 8k + 4, k ≥ 1, for k = 2i 
− 1, j = 4i− 2, i ≥ 1,σ =(a2, a12i-1)( a6, a12i+3)...( am-2, a12i-

5) ∈  A1, but σ ∉  Aut(G, S), by Proposition 2.1, Γ = 
Cay(G, S) is not normal, the Case (54) of Theorem 1.1, 
and for k= 2i, j = 12i + 2, i ≥1, σ =(a2, a4i+3)( a6, 
a4i+7)...( am-2, a4i-1) ∈  A1, but σ  Aut(G, S), by 
Proposition 2.1, Γ=Cay(G, S) is not normal, the Case 
(55) of Theorem 1.1. In the Case (3), if m = n = 3, σ = 
(ab, a2b2) 

∉

∈  A1, but σ ∉  Aut(G, S), by Proposition 
2.1, Γ = Cay(G, S) is not normal, the Case (56) of the 
main theorem. If m = 4, σ = (ab2, a3b2) ∈  A1, but σ ∉  
Aut(G, S), by Proposition 2.1, Γ = Cay(G, S) is not 
normal, the Case (50) of Theorem 1.1. Otherwise, Γ = 
Cay(G, S) is normal by Lemma 3.3(27) . 
In the Case (4), if m = 2, we have the Case (21) of 
Theorem 1.1. if m≥ 3, Γ = Cay(G, S) is normal by 
Lemma 3.3(28). In the Case (5), if m = n = 1,σ = (ab, 
a2b2)∈A1, but ∉  Aut(G, S), by Proposition 2.1, Γ = 
Cay(G, S) is not normal,  the Case (56) of Theorem 
1.1. Otherwise, Γ = Cay(G, S) is normal by Lemma 
3.3(29). In the Case (6), Γ = Cay(G,S) is normal by 
Lemma 3.3(30). 
 

4. Conclusion 
Let Γ = Cay (G, S) be a connected Cayley graph of a 
abelian group G on S. In this paper we have shown all 
non-normal Cayley graph Γ with valency 6. 
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