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ON THE NUMERICAL SOLUTION OF ONE DIMENSIONAL
SCHRODINGER EQUATION WITH BOUNDARY
CONDITIONSINVOLVING FRACTIONAL DIFFERENTIAL
OPERATORS

B. Jazbi

& M. Moini

Abstract: In this paper we study of collocation method with Radial Basis Function
to solve one dimensional time dependent Schrodinger equation in an unbounded
domain. To this end, we introduce artificial boundaries and reduce the original
problem to an initial boundary value problem in a bounded domain with
transparent boundary conditions that involves half order fractional derivativeint.
Then in three stages we use the Laplace Transform method, the collocation method
and finally the Legender expansion method. Numerical examples are given to show

the effectiveness of the scheme.
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1. Introduction

The time dependent Schrodinger equation is the
base of quantum mechanics[1, 2]. This model equation
also arises in many other practical domains of physical
and technological interest, e.g. optics, seismology and
plasma physics. There are a lot of studies on the
numerical solution of initial-boundary problems for
solving the linear or nonlinear Schrodinger equation [3,
4, 5, 6]. When we want to solve numericaly a
differential equation defined on an infinite domain, it is
necessary to consider a finite sub domain and to use
artificial boundary conditions in such a way that the
solutions in the finite sub domain approximate the
original solution. If the approximation is exact, the
transfer is called exact and the corresponding artificial
boundary condition is called exact or transparent.
In this paper application of the collocation method with
RBF to solve one dimensional time dependent
Schrodinger equation isinvestigated.
A fairly new approach to solving PDEs is through
Radial Basis Functions (RBFs). The RBFs depend only

on the distance say /(|| x —X; |[) , where ||.|| denotes

the Euclidean norm. The RBFs may also have a shape
parameter C, in which case y(r) is replaced with

Yr,0, where y(r) is some function defined for
r > 0. The most popular RBFs are given as follows:
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(1) Multiquadrics (MQ):
w(r)=(%+ cz)g, B=135,.,2N +1,...,
(2) Inverse Multiquadrics (IMQ):

w(r)=(r+ cz)g, -f=135,.,2N+1,..,

(3) Gaussians (GA):
y(r) = exp(-c”r?),

(4) Inverse quadrics (1Q):
w(r)=(r?+c?)™.

A key feature of an RBF method is that it does not
require a grid. The only geometric properties that are
used in an RBF approximation are the pair-wise
distances between points. Since the distances are easy
to compute therefore working in higher dimensions
spatial space does not increase the computational time.
The method works with points scattered throughout the
domain of interest, and the RBF interpolant is a linear
combination of RBFs centered at the scattered points

X :

s(x,C) = Zn:/li W(HX— x|, c),

where the coefficients A, are usualy determined by

collocation with given discrete data, such as function
values or derivative information. For study more about
this discussion see the book by Cheney and Light [7].
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The remainder of this paper is organized as follows: in
section 2 we introduce one dimensional time dependent
Schrodinger equation with transparent boundary
conditions (TBCs) and the construction of the discrete
scheme. In section 3 we give collocation method with
RBFs for approximation the problem. The inversion
formula for the Laplace transform is described in
section 4. The numerical results are proposed in section
5.

2. The Construction of the Discrete Scheme
In this paper, we consider the following linear
equation [8]:

|—(xt)——%%(xt)+th)u(xt) |

v(x)eQ, (1

u(x,0) =u’(x) , —0< X< 40,

Where Q= {(x,t)\ -0 < X<+m,,0<t ST}, V(xt)
designates a given potential (real valued) function on
Q, u°(x) isthe complex initial data givenon R, and

the unknown function U(X,t)is a complex value

function on €. Let us split the initiadl domain Q into
three regions. For this reason, first we introduce two
artificial boundaries as follows:

M, = {(xt)|x=0,0<t<T},
M, = {(xt)[x=1,0<t<T}.

Then the domain Q2 is divided into three parts. Two
unbounded parts are as follows:

Qoz{(x,t)|—oo<XS0,0<tST},
={(xt)|1<x<+o0,0<t<T},

and one bounded part is:

:{(x,t)|0< x<1,0<t£T}.

The finite sub domain Q° is our computational
domain. Let V(x,t)=1 and u® is compact support
with:

sup p{uo}c [0.1].

We consider the restriction of the solution of problem

(1) on the domain Q°. The TBCs for Schrodinger
equation have been independently derived by several
authors from various application fields [9, 10]. They
arenon-local in t and read:

(Ot) \f "d U(Ou)e"’
Jt-u

,on I1,, (2
ou 2 %t d eru(dp)e”
HMay=-[|Se s L[ HALE 4
oY \Ee ado g

,on TII,. 3

Using the notations of the Riemann- Liouville
fractional derivative, the boundary conditions (2) and
(3) can be written as:

1

i d2[u(o, t) e"]

(Ot) J2e + /=1 on II,,
dt2
0 nd2 t)e"
dt?

As a consequence, the boundary value problem to
approximate is now given by:

10%

|—( t)y=— 282(x,t)+u(x,t) ,
v(x,t)eQ®, (4)
X 0y- \f . thﬂ,
0 t— ,U

0<t<T , (5

ou 2 -iZ-itd ru(l, p)e”
—@Lty=—]"e * —| ==——du,
6X(l') \/; dteo Jt—u #

0<t<T, (6)

u(x,0) =u’(x) , 0<x<1

This initial boundary value problem is well-posed and
its solution coincides with the solution of the original

problem (1) restricted to ﬁc [11].
Here, we focus on discrete model for boundaries. We
consider u(0,0) =u(L,0) =0 and let:

tu(0, ) e

E 0 Jt—u

du

= 2g I,/t—,ui{u(o u)e” }d,u
dt-o du ’

_ ti iu d/u

=[, 400 R @)
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According to the equation (7), we can rewrite
equations (5) and (6) asfollows:

ou B 3 —i%—it ti i du
aX(o,t)—\/;e Jaga @ e T ®

Mo |2 pd wy_du
— (0= \/;e Joge W@meN F=—- @

By applying Laplace transform for equations (4), (8)
and (9), we have:

i(sU (x,9)—u(x0)) =—%§Tg(x,s)+U(x, 5,

v(x,8)Q®, (10)

N 0,9 =Ks|-FU(@Qs), 5,<s<w0, (11
OX S+i

N 19 =-Ks|ZU@Ls), 5,<s<w, (12
oX S+i

where:

I(:\/Zei4 s
T

Q"':{(x,s)|0< X<1,8,<S<w }

U (x,8) = L(u(x,t)) ,

For discretization, we consider:

h:

1
N i)

where N is positive integer and h is spatial sizes.
The one dimensional nodal points are defined as:

x =ih , i=012..N .

3. Description of the Collocation Method With
RBF
In this section, we study collocation method with

RBF. Let {xi}i'io be N+1 distinct collocation

nodal points in [0,1]. In this study we consider
multiquadric RBFs as defined as:

v, (X)=y(r)=4r>+c,c>0,i=012,..,N,
where:

=] x=x].

The unknown function u(X, t) can be approximated as:

%) =38 0,09 13
and it's Laplace transform:

U9 = Za (9w, (%) . 1)
where :

a(s)=L(a®) .

and &, (S)is unknown and y/, (X) is known. By using

collocation method for PDE, we have the following
eguation:;

res(x,,s)=0 , k=12,..N-1. (15)

Substituting (13) and (14) into (15), we can obtain the
following scheme:

S 49w (%) -3 2,0y, (%)=
EINACTACHEDRACIACIR

After simplify, we have:

Dyo(8) 8y (8) +---+ Dy (S)ay (8) =
Beo(0) +...+ Byay (0) (16)

Where:

1 1
ij(s):(s_T)Bkj +E Py »

1

B, =il(k—j)*h*+c]? ,

B 1 _ (k=)?h?
k=22 e k- j)?h? <
k=12..,N-1, j=01.., N .

Therefore, substituting (14) into (11) and (12), we can
obtain the following scheme:

Py

Ksn 8,(s)+Wa,(s)+...+ W, 4, (s) =0, @7

Qudy(s)+..+Qay ,(s)+Ksn &, (s) =0, (18)

Where:
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W, (s)=Ks |~ y,+4, , j=0L.., N,
S+1
Q(s)_Ks‘/ Yi—4

=\/(jh)2+c ,

jh cr
Y S+i
Introducing the state vector :

a(s) = (85(5),8,(8),-- 8y (9))"

and matrices:
Ksp W W, W
Do D ... Dny DO
Do DBy .... Dny Dy
Hk(s)=

QN*J)O QN*M ot QN*JJ(N*JJ QN*J)N

| Q Qu ---. Q  key]
0 o .... 0 0 |
Bo B -... Byy By
Bo B. ... Buy By

Bugo Buas - - - - Buany Buan
0 o .... 0 0

We have matrices form of (16), (17) and (18) as
follows:

H,(s)a(s) = Ea(0) , (19)

Where  H,(S),E ae  matrices in  order
(N +1) x (N +1). Uniqueness of the solution (19) is a
consequence of the following theorem.

3.1. Theorem: If f completely monotone but not
constant on [0, 0] , then the function x — f (| x|*) is

aradia, strictly positive definite function on any inner-
product space. Thus, for any n distinct points

X, Xy, X, INsuch a space the matrix
A = f(H X - X, HZ) is positive definite (and therefore
nonsingular) [7].

We can obtain the corresponding system of (19) which
involves (N +1) equations and (N +1) unknowns.
This system can be solved either a direct method or
iteration methods. The next step of our numerical
scheme consist of approximation inversion of Laplace
transform. We discuss briefly in the following section.

4. Thelnversion Formulafor the Laplace
Transform
The problem of the recovery of a rea function
u(t) , t >0, givenits Laplace transform [12]:

U(s) = j:’ esu(t)dt

for real values of s, is an ill-posed problem in the
sense of Hadamard and is therefore affected by
numerical instability. This difficulty is not very serious
when U (S) isalso known for complex values of s

such a case, severa methods have been developed
which, in general, work rather well even if they require
a large computational cost and high-precision
arithmetic. More stable method can be find in [13].
Here, we explain one of the inversion formulae for the
calculation of the original function u(t) ,t >0, and it
is called Legendre expansion method [14]. It's shown
that of the Laplace transform i.e. u(t) can be

formulated, by using Legendre polynomials. If u(t) is

defined at each point of the positive real line, then the
function:

e™uit) , h>1,

may be expanded as a Fourier-Legendre series:

Sapr( |

where the coefficients are given by the formula:

x=1-2e" |,

1.t _(h-Dt
a,=(n+2) j UM e ™R, (dx
=(2n+1) j : ut)e P, (1-2e")dt .

Making use of Murphy's formula:

n) (n +1)

P.(x) = Z( Xy

we see that:
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a, —(2n+1)ZMU (h+r)

r=0 |)2

h>1. (20

Hence we have the inversion formula:
ut)=e""> a P @-2e")

with the coefficients a, given by the formula (20).

Thisformulais useful when the transform U is known
at adiscrete set of points.

5. Numerical Results
Example 1. Consider initial value problem of
Schrodinger equation as follows:

. ou 16%u " .

I—(x,t) =—=—(X,t)+u(x,t)—e (3+3i

8t( ) 28x2( ) +u(x,t) ( )
+(9+ 7i)x—6x% - 6ix® + 2ix*

,0<x<1,t>0,

xdmou) 1 -
(Ot) du+@+i)e™,
Js >
t>0,
ou _frau(d, u) 1
B0 e
t>0,
u(x,0) = (1+)(1-x)°x , 0<x<1.

It'sanalytic solution :
u(x,t) = @+i)L-x)*xe™

We take number of nodes 7 and bases function as
follows:

v (X) :\/(X_Xi)z +1.

We can see that corresponding error is:
HU (x,9) -U"(x, s)” =0.003.

Example 2. Consider initial value problem of
Schrodinger equation as follows:

. ou 10%u
i—(x,1)=-=
6t( ) 2 ox?
@+ix+@-i)x®-x%),
,0<x<1,t>0,

(X, t) + xu(x,t) —e" (1+i)

tdu(0 )
( 1) = —dy+(1+|)e
R
t>0,
ou _ tdu(l, ) 1 _ S ot
0=, o, et
t>0,
u(x,0)=(1+i)1-x)x , 0<x<1.

It's analytic solution :
u(x,t) = (@+i)d-x)xe™

We take number of nodes 7 and bases function as
follows:

‘//i(x):\/(x_xi)z +1.

We can see that corresponding error is:

||u (x,9)—U"(x, s)||® — 0.00054 .

6. Conclusion

In this paper, we have presented a scheme to
obtain a numerical solution of the Schrodinger
equation with TBCs using collocation method. The
results reported here show that the collocation method
based on RBF has many advantages as compared with
other methods such as finite difference method and
finite element method. Finite difference methods can
be made high-order accurate, but require a structured
grid. Finite element methods are highly flexible, but it
is hard to achieve high-order accuracy, and both coding
and mesh generation become increasingly difficult
when the number of space dimensions increases. The
most powerful feature of our scheme is flexibility of
implementation and application. The numerical scheme
consists of two parts, collocation method and Laplace
transform method. Both methods are ill-condition. To
stabilize the collocation method, we may use RBFs by
compact support. Recently, more stable methods
recommended by investigators. On the other hand, we
can obtain approximation function and it is easy to
generalize this method to higher dimension.
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