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Abstract: It is the purpose of this paper to introduce a computer software that is 
developed for the analysis of general multi degree of freedom rotor bearing 
systems with non-linear support elements. A numerical-analytical method for the 
prediction of steady state periodic response of large order nonlinear rotor dynamic 
systems is addressed which is based on the harmonic balance technique. By 
utilizing harmonic balance with appropriate condensation, it is possible to 
considerably reduce the number of simultaneous nonlinear equations inherent to 
this approach. Using this method, the set of nonlinear differential equations 
governing the motion of the rotor systems is transformed to a set of nonlinear 
algebraic equations. A condensation technique is also used to reduce the nonlinear 
algebraic equations to those only related to the physical coordinates associated 
with nonlinear components. The stability (linear) of the equilibrium solutions may 
be conveniently evaluated using Floquet theory, particularly if the damper force 
components are evaluated in fixed, rather than rotating, reference frames. The 
versatility of this technique is illustrated on systems of increasing complexity with 
and without damper centralizing springs. 

 
Keywords: Rotor dynamics, fluid film bearings, inherent non-linearity, harmonic 
balance method, system reduction 

 
1. Introduction1 

The study of the motion of rotating machinery, i.e. 
rotor-dynamics, has long been an important field of 
engineering research. Rotors are found in a wide range 
of applications ranging from those found in large scale 
machinery used in the power generation industry to 
tiny rotors used in medical equipment. Rotating 
machinery generally consists of flexible shafts on 
support systems rolling element bearings, fluid film 
bearings, seals, etc.  
The application of squeeze film dampers are 
commonly found in aircraft gas turbine engines, 
whereby these dampers provide additional external 
damping to the rotor bearing system for the purpose of 
reducing the synchronous response of the rotor 
especially while traversing critical speeds. There are 
two basic configurations of these dampers, which are 
the dampers with retainer springs and those without 
retainer springs. They differ in the way the rotor finds 
its position in the damper clearance space. In the 
damper without retainer spring, the journal that usually 
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lies at the bottom of the clearance space when the rotor 
is at rest, is lifted when sufficient imbalance is 
generated during running conditions of the rotor. In the 
damper with retainer spring, the journal is fitted with a 
spring, which often takes the form of a thin ribbed 
cylinder known as a squirrel cage. The retainer spring 
is fixed, at one end, to the dampers journal, whilst the 
other end is fixed to the damper�s housing. A 
centralizing mechanism is occasionally used in 
conjunction with the retainer spring for the purpose of 
centring the journal in the damper clearance space. The 
stability and imbalance response of a flexible rotor 
mounted in centrally preloaded squeeze film dampers 
has been theoretically and experimentally investigated 
[1,2], whereby bistable operation of the rotor was 
found at certain values of design and operating 
parameters. Nikolajsen and Holmes [3] observed non-
synchronous whirl orbits in the experimental response 
of a flexible rotor supported by journal bearings in 
series with squeeze film dampers with retainer springs. 
The effect of fluid inertia for cavitated dampers 
operating at moderately large squeeze film Reynolds 
number has been theoretically observed by San Andres 
and Vance [4] to possibly reduce or totally eliminate 
bistable operation and jump phenomena in the response 
of a flexible rotor mounted in centrally preloaded 
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squeeze film dampers. Zhao [5] has shown the 
occurrence of jump phenomena and quasi-periodic 
motion in the concentric operation of squeeze film 
dampers supported flexible rotor. For eccentric 
operation of the damper, sub synchronous motion was 
also observed in addition to the jump phenomena and 
quasi periodic motion. In a paper by Ramesh and Kirk 
[6] the non linear response of a flexible rotor in 
eccentrically operated squeeze film dampers with 
centring springs was compared to the rotor response 
assuming a centrally preloaded damper. The centrally 
preloaded damper assumption, which gives 
synchronous circular rotor motions, had often been 
used in the study of rotor response due to 
computational simplicity as compared to the non linear 
damper model. 
In the actual running condition of a rotor, the damper 
does not remain in a centred position but tends to find 
its own eccentric position. The response resulting from 
the non linear model can be significantly different than 
that resulting from the centralized damper assumption. 
In the response of a flexible rotor in squeeze film 
dampers without retainer springs, theoretically 
investigated by Cookson and Kossa [7], it was found 
that for poorly designed dampers, the maximum force 
transmitted to the bearing support can be significantly 
greater than would have been the case if the dampers 
were not fitted. The occurrence of quasi periodic 
vibrations has been observed by Rezvani and Hahn [8] 
in the experimental response of a flexible rotor in 
squeeze film dampers without retainer springs. 
For dampers which are not centrally preloaded, the 
steady state journal centre orbit need not be circular 
and its determination generally necessitates transient 
solutions [7]. It is often computationally prohibitive to 
carry out parametric design studies on the vibration 
behaviour of such rotor bearing systems, and various 
attempts have been made to quasi-linearize  the damper 
forces [9]. Such solutions assume that the journal 
centre motions are synchronous with the excitation 
frequency and make no allowance for the possibility of 
sub and super-harmonic vibrations. Trigonometric 
collocation and harmonic balance techniques have been 
successfully tried over a limited range of relevant 
parameters [10] for rigid rotors. Extension to general 
rotor bearing systems necessitates a condensation of 
the potentially large number of nonlinear simultaneous 
equations to a manageable size, and the technique to be 
used for determining equilibrium orbits in this report is 
similar to that in [11], except that recourse to complex 
numbers is avoided. As evidenced by the unexpected 
instabilities discovered in [12], stability evaluation of 
equilibrium orbits is an essential requirement of 
assumed equilibrium solution analyses. Since the 
perturbed orbits may now result in linear differential 
equations with periodic coefficients even with rotating 
coordinates, the theory is developed with the damper 
forces expressed directly in terms of stationary 
coordinates, thereby simplifying the application of 

Floquet theory [13,14] in evaluating system stability. 
The versatility of the technique is illustrated on 
systems with and without centralizing springs and of 
increasing complexity. Of particular interest, is the 
applicability of this approach to unsupported systems 
with relative large unidirectional loadings, i.e., at high 
orbit eccentricities as occurs when the damper has just 
lifted off, as well as to the confirmation of the 
instability results reported in [12]. 
 

2. Theoretical Model 
2-1. Mathematical Development 

The equations of motion of a rotor dynamic 
system with the assemblage of rigid disks, flexible 
rotor shaft, bearings, and supports can be modelled 
with the following procedure. 
Consider an r-degree of freedom rotor bearing system, 
with nonlinear forces associated with q of theses 
degrees of freedoms running in one or more squeeze 
film damped flexible supports. The multi-mass flexible 
rotor in Fig. 1 is an example of such a system wherein 
highly nonlinear damper forces exist at each damper 
location.  
 

 
Fig. 1. Schematic of a flexible rotor bearing system 

 
One can write the equations of motion as : 
 

FKXXCXM                   (1) 
 
where the first  p  equations do not involve non-linear 
motion dependant forces. 
 
i.e., p = r-q.                (2) 
 

If steady-state conditions have been reached, with the 
system being subjected to a periodic excitation force of 
frequency , such as unbalance excitation, one can 
assume that the equilibrium or steady state solutions 
are of the form: 
 

X A A t B tE k k k k
k

n

  


0
1
( cos sin )             (3) 

 

Where 
 

 k  k N/  = k               (4) 
 
and it is assumed that there are n harmonics of the 
fundamental frequency . Required are the (2n+1)r 
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coefficients  A 0 , ,..., , ,...,A A B Bn n1 1   which are to 
be found by harmonic balance. Thus, 
 





n

k
kkkkkE tBtAX

1

)cossin(               (5) 

 

And 
 





n

k
kkkkkE tBtAX

1

2 )sincos(               (6) 

 
and Eq.(1) becomes: 
 

EEEE FKXXCXM                 (7) 

 
where    
 

F C C t S tE k
k

n

k k k  


0
1

( cos sin )               (8) 

 
The Fourier coefficients of FE  , viz. C Ck0 ,  and Sk  are 

functions of the X E , the EX  , and the external 

excitation. 
Hence, on substituting Eqs.(3), (5) and (8) into Eq.(7) 
and equating coefficients for the constant terms, one 
obtains: 
 

KA C0 0                   (9) 
 

or, in partitioned form: 
 

K K

K K

A

A

C

C
pp pq

qp qq

p

q

p

q
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


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









0

0

0

0

            (10) 

 

where  K pq   is a matrix of order  p q  and  C p
0  is a 

vector of order  p . 

By eliminating the  A p
0   from Eq.(10) one obtains: 

 

 K K K K A K K C Cqq qp pp pq
q

qp pp
p q   1

0
1

0 0       (11) 

 
Equation (11) is a set of q  nonlinear simultaneous 
equations in the (2n+1) q unknowns   

A A A B Bq q
n
q q

n
q

0 1 1, ,... , , ,... ,  which determine the C q
0 . 

Note that in the absence of linear spring forces, K=0, 
and the left hand side of Eq.(11) is then zero. 
Again, on equating coefficients for the cosine terms, 
for each  kth harmonic, one obtains: 
 

 K M A CB Ck k k k k   2             (12) 
 

or 
 
QA RB Ck k k                             (13) 

Similarly, on equating coefficients for the sine terms, 
for each  kth harmonic, one obtains: 
 
QB RA Sk k k               (14) 
 
Elimination of Ak  from Eqs.(13) and (14), by pre-

multiplying Eq.(13) by  Q1  and substituting into 
Eq.(14) gives: 
 

 Q RQ R B S RQ Ck
k k   1 1             (15) 

 
Or 
 
TB Wk                (16) 
 
In partitioned form: 
 


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qq
            (17) 

 

Note that the W p  and the W q  are functions of X E  

and EX . Elimination of Bk
p  from Eq.(17)  gives: 

 

 T T T T B T T W Wqq qp pp pq k
q

qp pp
p q   1 1            (18) 

 
Equation (18) constitutes a further set of   nq   
nonlinear simultaneous equations in the (2n+1)q    
unknowns. 
Again, elimination of  Bk   from Eqs.(13) and (14) by 

pre-multiplying Eq.(14) by  Q1  and substituting into 
Eqs.(13) gives: 
 
TA C RQ S Vk k k  1              (19) 
 
Partitioning as was done before to obtain Eq.(17) from 

(16), one can solve for the  Ak
q    to obtain: 

 

 T T T T A T T V Vqq qp pp pq k
q

qp pp
p q   1 1            (20) 

 

where again the V p  and V q  are functions of the X E  

and EX . Equation (20) constitutes yet another set of 

nq nonlinear simultaneous equations in the (2n+1)q 
unknowns. Hence, together with Eqs.(11) and (18), one 
has a set of  (2n+1)q  nonlinear simultaneous equations 
in the  (2n+1)q  unknowns  A A A B Bq q

n
q q

n
q

0 1 1, ,... , , ,... , . 
These equations need to be solved by some iterative 
procedure, such as Newton - Raphson which is the 
procedure adopted in this report. Convergence is 
assumed when changes in successive values of the 
unknowns are less than 0.0001C. Significant values for 
the amplitudes of the highest assumed harmonics 
indicate the need for including additional harmonics, 
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and such further addition of harmonics continues till 
there is no significant change in the lower harmonic 
values. Once found, the remaining (2n+1)p  unknowns,  
A A A B Bp p

n
p q

n
p

0 1 1, ,... , , ,... ,   can be found from the now 
simultaneous linear sets of equations obtained by 

eliminating the Aq
0  from Eqs.(10), Bk

q  from Eqs.(17) 

and Ak
q  from Eqs.(19). 

Note that no matter how many degrees of freedom 
there are in the system, the number of nonlinear 
simultaneous equations to be solved is still only 
(2n+1)q. In general, each damper introduces nonlinear 
forces into four equations of motion, reducing to two 
equations when the damper connects to ground. Thus, 
q = 4 or 2 for a system with one damper only, whereas 
r could be  a number of any value. Also, for physical 
systems, Q1 and Tpp

1 always exist, so the only 

computational problem is that generally associated 
with numerical iterative schemes, viz. convergence to 
all possible solutions. The other potential disadvantage 
of this approach is the initial choice of the fundamental 
frequency. Subharmonic solutions (solutions with 
frequency components lower than the lowest excitation 
frequency) are occasionally possible. These are catered 

for by assuming a fundamental frequency of    N   
where  N  is assumed to be an integer. However, there 
is no sure way of knowing whether all possible values 
on  N  have been exhausted as multi-equilibrium 
solutions of the same or of different fundamental 
frequencies to the excitation frequency are occasionally 
possible. 
 
2-2. Fluid Film Forces 

The above theory is developed quite generally and 
may be applied to any system with nonlinear motion 
dependent forces. The illustrative examples in this 
report involve the nonlinear forces arising with end 
feed squeeze film dampers [15]. It is assumed that the 
fluid is Newtonian with constant properties at some 
mean temperature, the flow is laminar, the fluid inertia 
forces are negligible, there is no slip at the bearing 
surfaces, h/L is of order 10-3 , the short bearing 
approximation is applicable (valid provided L/D < 
0.25, [15]), and there is no variation in the film 
thickness in the axial direction. The momentum and 
continuity equations for the damper fluid then result in 
the simplified Reynolds equation [16] viz: 
The fluid film force components are then given by: 
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* 3

.
.

3                   (21)  

 
3. Computer Program 

Following the basic theory presented in this article 
a computer program for dynamic analysis (HBA) of 
general squeeze film damped multi-degree of freedom 
rotor bearing systems based on the harmonic balance 
method is developed.  

 
3-1. Program Flow Chart 

Flow of programs for harmonic balance analysis of 
general squeeze film damped multi-degree of freedom 
rotor bearing systems, program HBA, is given in Fig. 
2. 

 
3-2. Program Input / Output 

Elements of mass, damping and stiffness matrices 
are initialized with zeros in the main program. As a 
result, user needs to fill in nonzero elements only. 
Constant terms in forcing functions assumed to 
correspond to gravity. For those freedoms required, 
user introduces amounts of masses only. Cosine and 
sine terms of forcing functions assumed to rise from 
the presence of unbalance masses. Squeeze film 
damper parameters including oil viscosity, radial 
clearance, radius, length, and number of squeeze film 
dampers should also be 

Program HBA

  initialize data
read in data

HBA.INP HBA.OUTopen I/O files

 HARM

read in cons

read in cost
read in sint

PART

INITIAL

read in 

  pl1,pl2

loop>1

INI.DAT

No

seq

inikey=1

Yes

No

find bearing para. 

DNEQNF
IMSL

FCI

FORCE

DQG32
IMSL

DFFTRF
IMSL

F1 F2

vis,c,rad,xl,nsfd

k=1

k=2

DIVPRK
IMSL

FCC DEVLRG
IMSL

Fig. 2. Flow chart of Harmonic Balance Analysis 
program (HBA) 

 
given as input data. Preload assumed to be effective on 
damper vertical freedoms, also affected by gravity. 
Initial guesses are essential for harmonic balance 
solutions. This program can find its initial guesses 
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from two sources namely from data available in an 
input file or by rewinding temporary output file and 
reading last stage data as initial data for the next stage. 
Output from this program includes information about 
the system including total degrees of freedom, number 
of linear and nonlinear freedoms, level of sub-
harmonics included, number of Fourier terms used and 
rotor frequency. Mass, damping and stiffness matrices 
plus damper specifications together with the amount of 
preloads on damper freedoms are also included. 
Displacement of damper inner and outer freedoms, 
corresponding absolute eccentricities, eccentricity of 
inner ring relative to outer ring and stability analysis 
data in form of eigenvalues are also part of output data. 
 
3-3. The Main Program  

Purpose of the main program is to open 
input/output files, initialize data, set system equations 
of motion according to input data, initialize solver 
subroutines and print out the results. The 
corresponding  sub-programs include; 
- HARM        - INITIAL       - PART       - FCI               
- FCC         - FORCE       - F1       - F2       - DQG32       
- DNEQNF         - DLINRG       - DMRRRR                 
- DIVPRK       - DEVLRG      - DFFTRF 
     
3-4. Brief Description of Sub-Programs 

Within this computer software, the main program 
�HARM� calls in 15 subprograms to perform different 
numerical tasks. A brief description about individual 
subprograms is given in this section. The required 
programming syntaxes corresponding to these 
subprograms are provided in Table 1. 
 

Tab. 1. The required program syntax for all 
subprograms called in by program HARM 

 Program Syntax to call 
1 HARM HARM(amp, cpp, akpp) 
2 PART PART(la, lb, a, b, c, nr, np, nq, k, f, 

f1, g, g1, y, w1) 
3 INITIAL INITIAL(seq, loop) 
4 FCI FCI(seq, f, mm) 
5 FORCE FORCE(seq, cc) 
6 F1, F2 F1(x), F2(x) 
7 DQG32 DQG32 
8 FCC FCC(nr2, t, q, qprime) 
9 DNEQNF DNEQNF (fcn, errrel, n, itmax, xguess, x, 

fnorm) 
10 DLINRG DLINRG (n, a, lda, ainv, ldainv) 

11 DMRRRR DMRRRR(nra, nca, a, lda, nrb, ncb, b, 
ldb, nrc, ncc, c, ldc) 

12 DIVPRK DIVPRK (ido,n,fcn, t, tend, tol, param, y) 

13 DEVLRG DEVLRG (n, a, lda, eval) 
14 DFFTRF DFFTRF (n, seq, coef) 

 
Subprogram �HARM� 
The purpose of this subroutine is to build the idealized 
system equations of motion based on input data. 
System mass, damping, and stiffness matrices are input 

to this program. It then reads in all the terms, including 
constant terms and unbalance terms, in forcing 
functions. Subroutine PART is then called in twice, to 
reduce degrees of freedom to that corresponding to the 
number of non-linear equations. Other parts of program 
HBA have access to output from program HARM 
through common statements. 
 
Subprogram �PART� 
The task of subroutine PART is to reduce the degrees 
of freedom to that corresponding to the number of non-
linear equations. It is a general partition routine with 
nr, np, and nq defined in the calling program for the 
matrix a(la, la) and with k having either the value of 1 
or 2. When option 1 is specified, it is used for the k-
matrix. Option 2 is to partition the s-matrix (General 
theory). 

 
Subprogram �INITIAL� 
The purpose of this subroutine is to read in squeeze 
film damper parameters, amount of preload on damper 
freedoms and initial guessed solutions (seq). Damper 
parameters include oil viscosity, clearance, radius, 
length and number of dampers involved. It then 
calculates bearing parameter. Initial guess values can 
be supplied by the user in input file or program reads in 
�seq� from last solutions. When parameter �loop� is in 
use, program reads in �seq� from input file for loop=1, 
otherwise it rewinds file �INI.DAT� to update initial 
solutions.  

 
Subprogram �FCI� 
Subroutine FCI is a general routine setting up the 
system of nonlinear equations. From displacements 
specified in �seq�, subroutine FORCE is called to 
evaluate the forces in the x and y directions and return 
them as Fourier components. Subroutine FCI 
introduces the idealized system to IMSL subroutine 
DNEQNF. 

 
Subprogram �FORCE� 
The purpose of this subroutine is to evaluate the force 
terms arising from squeeze film dampers. From 
displacements specified in �seq�, subroutine FORCE is 
called to evaluate the forces in the x and y directions 
and return them as Fourier components in the vector 
cc. 

 
Subprograms F1 and F2 
For a given displacement y and z, and velocities dy and 
dz, functions F1 and F2 are called to give the damper 
forces acting in the y and z directions respectively at a 
particular angular position x. 

 
Subprogram DQG32 
This is a 32-order numerical quadrature integration 
subroutine. It is called by subroutine FORCE to 
perform squeeze film damper force calculations. 
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Subprogram �FCC� 
Subroutine FCC is a general routine setting up the 
system of linear equations. FCC introduces the 
idealized system to subroutine DIVPRK. 
 
Subprogram �DNEQNF� 
This subprogram solves a system of nonlinear 
equations using a modified Powell hybrid algorithm 
and a finite-difference approximation to the Jacobian. 
    
Subprogram �DLINRG� 
This subprogram computes the inverse of a real general 
matrix. 
 
Subprogram �DMRRRR� 
This subprogram multiplies two real rectangular 
matrices. 
  
Subprogram �DIVPRK� 
Solves an initial-value problem for ordinary differential 
equations using the Runge-Kutta-Verner fifth-order 
and sixth order method. 
 
Subprogram �DEVLRG� 
The purpose of this subprogram is to compute all 
eigenvalues of a real matrix. 
 
Sub program �DFFTRF� 
The purpose of this subprogram is to compute the 
Fourier coefficients of a real periodic sequence. 
 

3-5.  Input File �HBA.INP� 
This file contains input data to the main program 

HBA. It includes the sets of data which are presented 
in Table 2. 
 

Tab. 2. Input data for the computer software 
�HARM� 

input to the software description 
omstart omend 
omstep 

rotor operating speed 

nr nq nk nt nst linear and non linear freedoms 
amp system mass matrix 
cpp system damping matrix 
akpp system stiffness matrix 
cons constants in forcing functions 
cost cosine terms of forcing functions 
sint sine terms of forcing functions 
vis c rad xl nsfd squeeze film damper parameters 
pl1 pl2 preload on damper freedoms 
inikey directive to initial guesses 
seq vector of initial guesses 

 

Current version of program HBA, is based on 
dimensional parameters. Non-dimensional parameters 
may also be used. If so, it is the user�s task to make 
necessary adjustments in the program. Since elements 
of mass, damping and stiffness matrices are initialized 
as zeros in program HBA, the user needs to fill in 
nonzero elements only. Constant terms in forcing 
functions assumed to correspond to gravity. For those 

freedoms required, user supplies amount of masses 
only. They are multiplied by constant of gravity inside 
HBA. Cosine and sine terms of forcing functions 
assumed to rise from the presence of unbalance 
masses. Unbalance parameters given by the user is 
multiplied by  2 in program HBA, to provide 
unbalance forces. Squeeze film damper parameters 
including oil viscosity, radial clearance, radius, length, 
and number of squeeze film dampers should also be 
given as input data. Bearing parameter calculation is 
also included in the program HBA. Preload assumed to 
be effective on damper vertical freedoms, also affected 
by gravity. User enters amount of preloads without 
including gravity constant which is available in 
program HBA. Initial guesses are essential for 
harmonic balance solutions. This program can find its 
initial guessed solutions from two sources. If value for 
inikey is  01  then program fills in elements of vector 
�seq� from those data available in input file 
�HBA.INP�. If  �inikey�  is not equal to 01 then 
program rewinds file �ini.dat� and finds initial guesses 
from output of last program run.  
 

3-6. Output File �HBA.OUT� 
This file contains output data from program HBA. 

It includes information about the system under study 
such as total degrees of freedom, number of linear and 
nonlinear terms, level of sub-harmonics included, 
number of Fourier terms used and rotor frequency. 
Mass, damping and stiffness matrices plus damper 
specifications together with the amount of preloads on 
damper freedoms are also included. Displacement of 
damper inner and outer freedoms, corresponding 
absolute eccentricities, eccentricity of inner ring 
relative to outer ring and stability analysis data in form 
of eigenvalues are also part of output data. 
 

4. Computer Software Verification 
4-1. Flexible Rotor Bearing System � Centralized Damper 

Fig. 1 presents a flexible symmetric unbalanced 
rotor, the so-called Jeffcott rotor, supported on 
identical squeeze film dampers and centralizing springs 
of constant radial stiffness. The lumped mass at the 
bearing ends is m2, the centralizing spring has stiffness 
k2 and the rotor stiffness between the central and either 
end node is k1. All unbalance is assumed to be at the 
disk, resulting in a disk mass eccentricity  1. Viscous 
damping at the disk is c1. Damping at the disk is 
negligible compared with that provided by the damper, 
and hence may be neglected. Since the rotor is 
symmetric about the disk, it suffices to consider one 
half of the system only. Thus, for cylindrical whirl, the 
motion of the system will be described by the plane 
motion in the damper of a journal of mass m = m1/2+ 
m2 with unbalance eccentricity  )2/( 2111 mmm   . 

Working frequency extends beyond the pin pin critical 
speed of the rotor  c , centralizing springs are retained 

and the rotor is centrally preloaded. Such a system 
results in synchronous circular orbit type solutions, and 
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has been analysed previously in the literature for both 
equilibrium solutions and their stability in the linear 
sense [12]. By virtue of the synchronous nature of the 
orbits, such stability analysis were possible without the 
need to resort to Floquet theory, by writing the 
perturbed equations of motion with respect to a rotating 
reference frame, thereby obtaining linear differential 
equations with constant coefficients. Once super and/ 
or sub-harmonics of the excitation frequency are also 
present, as they will be in general, such a procedure no 
longer removes the periodicity of the coefficients in the 
perturbed equations of motion. Solutions for this 
flexible rotor model therefore proved particularly 
useful in evaluating the Floquet theory based stability 
analysis, since there are circular orbit solutions which 
are alleged to be unstable, and indeed, unexpectedly so 
[12]. Referring to Fig. 1 the equations of motion are 
given by: 

 

z

y

FXkxxkxm

Fxkxxkxm

mxxkxcxm

mxxkxcxm









4224142

3213132

2
114212121

2
113111111

)(

)(

sin)(

cos)(













 

 

where 
 y x 3  and  z x 4 
 

The equations are in the form of Eq. (1) with  r = 4 and  
q = 2. The following values of non-dimensional system 
parameters were used to allow comparison with [2]; 
 

,75.01 M ,25.02 M 2
1 )//(75.0 cK 

2
2 )//(25.0 cK  , ),//(0075.01 cC    

3.0U ,  r c/ . 0 5.  
 

The equilibrium solutions for various values of the 
bearing parameter  b c/  are reported in [12]. Using 
the generalized theory that is developed and presented 
in this article, the same frequency response curve was 
obtained for  b c/ . 03 as indicated in Fig. 3. 
 

 
Fig. 3. Predicted frequency response of circular 

orbit eccentricities for the Jeffcott rotor,  
(E1 output from program HBA)  

(E2 equilibrium solutions reported in [12]) 

(U=0.3, M2 = 0.25, r/c = 0.5, b/c = 0.3) 
 
4-2. Flexible Rotor Bearing System�Uncentralized 
Damper 

The effect of removing the retainer springs from 
the fluid film bearings is simulated by changing the 
amount of stiffness corresponding to the damper 
degrees of freedom. Results are presented in Fig.4. 
 

 
Fig. 4. Predicted frequency response for the Jeffcott 

rotor, 
(dashed for supported damper, blank line for 

unsupported damper) 
(U=0.3, M2 = 0.25, r/c = 0.5, b/c = 0.3) 

 
Fig.4 presents a comparison between eccentricity ratios 
for the two cases of rotor bearings on nonlinear 
squeeze film bearing with and without spring support. 
While the rest of the rotor bearing data are the same as 
for the case of centralized damper in section 4.1. In this 
figure the dashed line is program HBA output for 
damper with spring support and the blank line is 
program output for damper without spring support. 
While program predictions for the second critical speed 
are the same for both cases, predictions of the 1st 
critical speed are different. For the amount of 
unbalance applied to the rotor at disk location, for 
Jeffcott rotor with unsupported fluid film bearing, the 
1st critical speed is higher. 
 

5. Conclusions 
The ability to theoretically model rotors and 

simulate response aids both efficient design of new 
rotors and rapid troubleshooting of existing rotors. 
Rolling element bearings, fluid film bearings, seals, 
etc. are commonly used in rotating machinery. There 
have however been cases of rotors mounted in such 
elements exhibiting non-linear behaviour. 
Noncircular orbit type dampers, such as unsupported or 
un-centralized dampers, have generally necessitated 
transient solutions, which are computationally 
prohibitive for design studies of large order systems, 
particularly for systems with low damping. By utilizing 
harmonic balance with appropriate condensation, it is 
possible to considerably reduce the number of 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

26
-0

2-
17

 ]
 

                               7 / 9

https://ijiepr.iust.ac.ir/article-1-127-en.html


68                                                                                                                                                                                                          AA  SSooffttwwaarree  ffoorr  PPrreeddiiccttiioonn  ooff  PPeerriiooddiicc  RReessppoonnssee  ooff  NNoonn  ��  

 

simultaneous nonlinear equations inherent to this 
approach. 
The harmonic balance approach for finding equilibrium 
solutions for general multi-degree of freedom rotor 
bearing systems with non-linear supports can result in a 
considerable reduction in the number of simultaneous 
non-linear equations which need to be solved 
iteratively. 
Perturbation of the equilibrium solutions result in as 
many second order linear differential equations with 
periodic coefficients as there are degrees of freedom. 
Floquet theory may be conveniently applied to 
determine stability. 
The theory of harmonic balances is successfully 
developed and is also used for the development of a 
computer software for the dynamic analysis of general 
multi-degree of freedom rotor bearing systems with 
nonlinear support elements. 
The versatility of the technique is illustrated on 
systems with and without centralizing springs and of 
increasing complexity. Of particular interest, is the 
applicability of this approach to rotor bearings with 
unsupported fluid film bearings with relative large 
unidirectional loadings, i.e., at high orbit eccentricities 
as occurs when the damper has just lifted off, as well as 
to the confirmation of the instability. 
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Nomenclature 
Ak    r 1 vector of Fourier coefficients defined by 

Eqs. (3); k = 0,...,n 
Bk    r 1 vector of Fourier coefficients defined by 

Eqs. (3); k = 0,...,n 
B  angular velocity for non-dimensionalization  

  =   RL m m C3
1 2

32/ ( )  

c c
n1,...,     damping coefficients associated with rotor of 

freedom x xn1,...,   
C radial clearance of damper 
C  r r  damping and gyroscopic matrix  
Ck  r 1 vector of Fourier coefficients defined 

by Eq. (8); k = 0,...,n 
d diameter of rotor in Fig. 1. 
e,  journal eccentricity;  = e/C 
E equilibrium value 
F r 1 vector of forces as defined in Eq. (1) 
F Fy z,  fluid film force components in the y and z  

directions 
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h fluid film thickness 
I r r  identity matrix 
k order of Fourier series component; k = 0,1,..., n 

k k1 2,  stiffness of retainer springs and rotor 
segments in Fig. 1 

K r r  stiffness matrix 
L length of axial land of damper 
m m m1 22/   

1m  lumped mass of disk in Fig. 1 

2m  lumped mass of each of the bearings in Fig. 1  

M r r  mass matrix 
n highest harmonic of truncated Fourier series 
N integer, usually 1 or 2 
O r r  null matrix 
O r 1 null vector 
p degrees of freedom without nonlinear forces 
P preload for centralizing the damper 
q degrees of freedom involving nonlinear forces 
Q , R r r  matrices defined by Eqs. (12) and (13) 
r degrees of freedom of rotor bearing system 
R bearing radius in Fig. 1 
Sk  r 1 vector of Fourier coefficients defined by 

Eq. (8); k = 1,...,n 
t time 
T r r  matrix defined by Eqs. (15) and (16) 
U unbalance parameter, 

   1 1 1 22m m m C C/ ( ) /   

V,W r 1 vectors defined by Eqs. (19) and (20) 
and (15) and (16) respectively 

W static load parameter = g C b/ ( ) 2  
x, y, z coordinate system with x in direction of shaft 

rotation and origin located along line joining 
bearing centres 

X r 1 vector of the degrees of freedom 
Z axial coordinate measured from bearing centre 

Ob in x direction; Z = Z / L 

  , ,1 2 location of disk unbalance eccentricities at 
time t  in Fig. 1. 

  a speed or frequency ratio;     / b 

k  defined by Eq. (4) 
  absolute viscosity of lubricant 
  1 1 1 22m m m/ ( )  
 1 2,  unbalance eccentricities at lumped rotor mass 

in Fig. 1. 
 fundamental frequency of steady state 

response 
  angular velocity of rotor 
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