[ Downloaded from ijiepr.iust.ac.ir on 2026-02-17 ]

IUST International Journal of Engineering Science,

Vol. 19, No.5-1, 2008, Page 61-69

A SOFTWARE FOR PREDICTION OF PERIODIC
RESPONSE OF NON-LINEAR MULTI DEGREE OF
FREEDOM ROTORSBASED ON HARMONIC BALANCES

Mohammad Ali Rezvani

Abstract: It is the purpose of this paper to introduce a computer software that is
developed for the analysis of general multi degree of freedom rotor bearing
systems with non-linear support elements. A numerical-analytical method for the
prediction of steady state periodic response of large order nonlinear rotor dynamic
systems is addressed which is based on the harmonic balance technique. By
utilizing harmonic balance with appropriate condensation, it is possible to
considerably reduce the number of simultaneous nonlinear equations inherent to
this approach. Using this method, the set of nonlinear differential equations
governing the motion of the rotor systems is transformed to a set of nonlinear
algebraic egquations. A condensation technique is also used to reduce the nonlinear
algebraic equations to those only related to the physical coordinates associated
with nonlinear components. The stability (linear) of the equilibrium solutions may
be conveniently evaluated using Floquet theory, particularly if the damper force
components are evaluated in fixed, rather than rotating, reference frames. The
versatility of this technique is illustrated on systems of increasing complexity with
and without damper centralizing springs.

Keywords. Rotor dynamics, fluid film bearings, inherent non-linearity, harmonic

balance method, system reduction

1. Introduction

The study of the motion of rotating machinery, i.e.
rotor-dynamics, has long been an important field of
engineering research. Rotors are found in a wide range
of applications ranging from those found in large scale
machinery used in the power generation industry to
tiny rotors used in medical equipment. Rotating
machinery generally consists of flexible shafts on
support systems rolling element bearings, fluid film
bearings, seals, etc.
The application of squeeze film dampers are
commonly found in aircraft gas turbine engines,
whereby these dampers provide additional externa
damping to the rotor bearing system for the purpose of
reducing the synchronous response of the rotor
especially while traversing critical speeds. There are
two basic configurations of these dampers, which are
the dampers with retainer springs and those without
retainer springs. They differ in the way the rotor finds
its position in the damper clearance space. In the
damper without retainer spring, the journal that usually
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lies at the bottom of the clearance space when the rotor
is at rest, is lifted when sufficient imbalance is
generated during running conditions of the rotor. In the
damper with retainer spring, the journal is fitted with a
spring, which often takes the form of a thin ribbed
cylinder known as a squirrel cage. The retainer spring
is fixed, at one end, to the dampers journal, whilst the
other end is fixed to the damper’s housing. A
centralizing mechanism is occasionally used in
conjunction with the retainer spring for the purpose of
centring the journal in the damper clearance space. The
stability and imbalance response of a flexible rotor
mounted in centrally preloaded squeeze film dampers
has been theoretically and experimentally investigated
[1,2], whereby bistable operation of the rotor was
found a certain values of design and operating
parameters. Nikolgjsen and Holmes [3] observed non-
synchronous whirl orbits in the experimenta response
of a flexible rotor supported by journa bearings in
series with squeeze film dampers with retainer springs.
The effect of fluid inertia for cavitated dampers
operating at moderately large sgueeze film Reynolds
number has been theoretically observed by San Andres
and Vance [4] to possibly reduce or totally eliminate
bistable operation and jump phenomena in the response
of a flexible rotor mounted in centraly preloaded
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squeeze film dampers. Zhao [5] has shown the
occurrence of jump phenomena and quasi-periodic
motion in the concentric operation of squeeze film
dampers supported flexible rotor. For eccentric
operation of the damper, sub synchronous motion was
also observed in addition to the jump phenomena and
guas periodic motion. In a paper by Ramesh and Kirk
[6] the non linear response of a flexible rotor in
eccentrically operated squeeze film dampers with
centring springs was compared to the rotor response
assuming a centrally preloaded damper. The centrally
preloaded damper assumption, which gives
synchronous circular rotor motions, had often been
used in the study of rotor response due to
computational simplicity as compared to the non linear
damper model.

In the actual running condition of a rotor, the damper
does not remain in a centred position but tends to find
its own eccentric position. The response resulting from
the non linear model can be significantly different than
that resulting from the centralized damper assumption.
In the response of a flexible rotor in squeeze film
dampers without retainer springs, theoreticaly
investigated by Cookson and Kossa [7], it was found
that for poorly designed dampers, the maximum force
transmitted to the bearing support can be significantly
greater than would have been the case if the dampers
were not fitted. The occurrence of quas periodic
vibrations has been observed by Rezvani and Hahn [8]
in the experimental response of a flexible rotor in
squeeze film dampers without retainer springs.

For dampers which are not centrally preloaded, the
steady state journal centre orbit need not be circular
and its determination generally necessitates transient
solutions [7]. It is often computationally prohibitive to
carry out parametric design studies on the vibration
behaviour of such rotor bearing systems, and various
attempts have been made to quasi-linearize the damper
forces [9]. Such solutions assume that the journa
centre motions are synchronous with the excitation
frequency and make no allowance for the possihility of
sub and super-harmonic vibrations. Trigonometric
collocation and harmonic balance techniques have been
successfully tried over a limited range of relevant
parameters [10] for rigid rotors. Extension to general
rotor bearing systems necessitates a condensation of
the potentially large number of nonlinear simultaneous
equations to a manageable size, and the technique to be
used for determining equilibrium orbitsin this report is
similar to that in [11], except that recourse to complex
numbers is avoided. As evidenced by the unexpected
instabilities discovered in [12], stability evaluation of
equilibrium orbits is an essential requirement of
assumed equilibrium solution analyses. Since the
perturbed orbits may now result in linear differential
equations with periodic coefficients even with rotating
coordinates, the theory is developed with the damper
forces expressed directly in terms of stationary
coordinates, thereby simplifying the application of

Floquet theory [13,14] in evaluating system stahility.
The versatility of the technique is illustrated on
systems with and without centralizing springs and of
increasing complexity. Of particular interest, is the
applicability of this approach to unsupported systems
with relative large unidirectional loadings, i.e., at high
orbit eccentricities as occurs when the damper has just
lifted off, as well as to the confirmation of the
instability results reported in [12].

2. Theoretical Model

2-1. Mathematical Development

The equations of motion of a rotor dynamic
system with the assemblage of rigid disks, flexible
rotor shaft, bearings, and supports can be modelled
with the following procedure.
Consider an r-degree of freedom rotor bearing system,
with nonlinear forces associated with g of theses
degrees of freedoms running in one or more squeeze
film damped flexible supports. The multi-mass flexible
rotor in Fig. 1 is an example of such a system wherein
highly nonlinear damper forces exist at each damper
location.
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Fig. 1. Schematic of a flexiblerotor bearing system

One can write the equations of motion as:
MX +CX +KX =F (1)

where the first p eguations do not involve non-linear
motion dependant forces.

i.e, p=r-q. 2

If steady-state conditions have been reached, with the
system being subjected to a periodic excitation force of
frequency o, such as unbalance excitation, one can
assume that the equilibrium or steady state solutions
are of the form:

Xe :A0+Zn:(Ak CosAt + B, sin A t) ©))
k=1

Where
/lk =ko/!/ N =kO 4)

and it is assumed that there are n harmonics of the
fundamental frequency Q. Required are the (2n+1)r
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coefficients Ag, Aq,..., Ay, Bq,..., B, which are to
be found by harmonic balance. Thus,

Xe ==Y A (A SinAt - B, cosAt) (5)
k=1

And

Xe ==> X (A cosit+ B sin4t) (6)
k=1

and Eq.(1) becomes:

MX, +CX, + KX, = F. 7

where

F. =C,+ 2(C, cosAt+S sin At) ®)
k=1

The Fourier coefficientsof F¢ , viz. C;,C, and S, are

functions of the X, the XE , and the external

excitation.

Hence, on substituting Egs.(3), (5) and (8) into Eq.(7)
and equating coefficients for the constant terms, one
obtains:

KA, =C, 9

or, in partitioned form:

K, Kalael [cel
Ky Kylag) el o

where K, isamatrix of order pxgand CJ isa
vector of order P.
By eliminating the Aop from Eg.(10) one obtains:

[qu—quK;;qu]Ag+quK;;C(§)=Cg 1)

Equation (11) is a set of ( nonlinear simultaneous
equations in  the (2n+l1) o} unknowns
ALA. AT BB which determine the C.
Note that in the absence of linear spring forces, K=0,
and the left hand side of Eq.(11) isthen zero.

Again, on equating coefficients for the cosine terms,
for each kth harmonic, one obtains:

[K_XEM]AK-{_AKCBKZCK (12)
or
QA +RB, =C, (13

Similarly, on eguating coefficients for the sine terms,
for each kth harmonic, one obtains:

QB, —RA =S (14)

Elimination of A, from Egs.(13) and (14), by pre-
multiplying Eq.(13) by Q' and substituting into
Eq.(14) gives:

[Q+RQ'R|B* =S + RQ'C, (15)
Or
TB =W (16)

In partitioned form:

TpP qu ka — Wp (17)
T Taa || B/ we
Note that the WP and the W are functions of X
and X . Elimination of B from Eq.(17) gives:

Toa = TooTonTra| B + T T o WP = W (18)
Equation (18) condtitutes a further set of ng
nonlinear simultaneous equations in the (2n+1)q
unknowns.

Again, elimination of B, from Egs.(13) and (14) by

pre-multiplying Eq.(14) by Q_1 and substituting into
Egs.(13) gives:

TA =C, - RQ_13< =V (19)

Partitioning as was done before to obtain Eq.(17) from
(16), one can solve for the Af to obtain:

T, —quTr;;qu] AL T T VP =V (20)

ap - pp

where again the V" and V9 are functions of the X

and XE. Equation (20) congtitutes yet another set of

ng nonlinear simultaneous equations in the (2n+1)q
unknowns. Hence, together with Egs.(11) and (18), one
hasaset of (2n+1)q nonlinear simultaneous equations
inthe (2n+1)g unknowns AJ,Af,... A% BY,..,BJ.

These equations need to be solved by some iterative
procedure, such as Newton - Raphson which is the
procedure adopted in this report. Convergence is
assumed when changes in successive values of the
unknowns are less than 0.0001C. Significant values for
the amplitudes of the highest assumed harmonics
indicate the need for including additional harmonics,
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and such further addition of harmonics continues till
there is no significant change in the lower harmonic
values. Once found, the remaining (2n+1)p unknowns,
AYLA ... AP .B!....,.BP can be found from the now
simultaneous linear sets of eguations obtained by
eiminating the A from Egs.(10), B from Egs.(17)
and A from Egs.(19).

Note that no matter how many degrees of freedom
there are in the system, the number of nonlinear
simultaneous equations to be solved is still only
(2n+1)qg. In general, each damper introduces nonlinear
forces into four equations of motion, reducing to two
equations when the damper connects to ground. Thus,
g = 4 or 2 for a system with one damper only, whereas
r could be a number of any value. Also, for physical
systems, Q* and T, adways exist, so the only

computational problem is that generally associated
with numerical iterative schemes, viz. convergence to
all possible solutions. The other potential disadvantage
of this approach is the initial choice of the fundamental
frequency. Subharmonic solutions (solutions with
frequency components lower than the lowest excitation
frequency) are occasionally possible. These are catered

3. Computer Program
Following the basic theory presented in this article
a computer program for dynamic analysis (HBA) of
general squeeze film damped multi-degree of freedom
rotor bearing systems based on the harmonic balance
method is devel oped.

3-1. Program Flow Chart

Flow of programs for harmonic balance analysis of
general squeeze film damped multi-degree of freedom
rotor bearing systems, program HBA, is given in Fig.
2.

3-2. Program Input / Output

Elements of mass, damping and stiffness matrices
are initialized with zeros in the main program. As a
result, user needs to fill in nonzero elements only.
Constant terms in forcing functions assumed to
correspond to gravity. For those freedoms required,
user introduces amounts of masses only. Cosine and
sine terms of forcing functions assumed to rise from
the presence of unbalance masses. Squeeze film
damper parameters including oil viscosity, radia
clearance, radius, length, and number of squeeze film
dampers should also be

Fy ——yRLSIW” (ycosy +zsiny) [cosy
v' (C-zsny - ycosy)® |siny

for by assuming a fundamental frequency of Q = w/N
where N is assumed to be an integer. However, there
is no sure way of knowing whether all possible values
on N have been exhausted as multi-equilibrium
solutions of the same or of different fundamental
frequencies to the excitation frequency are occasionally
possible.

2-2. Fluid Film Forces

The above theory is developed quite generaly and
may be applied to any system with nonlinear motion
dependent forces. The illustrative examples in this
report involve the nonlinear forces arising with end
feed squeeze film dampers [15]. It is assumed that the
fluid is Newtonian with constant properties at some
mean temperature, the flow is laminar, the fluid inertia
forces are negligible, there is no dip a the bearing
surfaces, h/L is of order 10° | the short bearing
approximation is applicable (valid provided L/D <
0.25, [15]), and there is no variation in the film
thickness in the axial direction. The momentum and
continuity equations for the damper fluid then result in
the simplified Reynolds equation [16] viz:
The fluid film force components are then given by:

(21)
Program HBA
HBA.IN openl/Ofiless | HBA.OUT
read in data
— initialize data
HARM INITIAL || DNEQNH | DIVPRK
k=1 . IMSL || IMSL
. read in
&Sazd In cons) vis,c,rad,xl,ns
read in cost pI1pi2
[ readinsint find bearing pal -
L IMSL
PART

DQG32 DFFTRF
IMSL IMSL
INL.DAT

:

Fig. 2. Flow chart of Harmonic Balance Analysis
program (HBA)

given as input data. Preload assumed to be effective on
damper vertical freedoms, also affected by gravity.
Initial guesses are essential for harmonic balance
solutions. This program can find its initial guesses
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from two sources namely from data available in an
input file or by rewinding temporary output file and
reading last stage data asinitial data for the next stage.

Output from this program includes information about
the system including total degrees of freedom, number
of linear and nonlinear freedoms, level of sub-
harmonics included, number of Fourier terms used and
rotor frequency. Mass, damping and stiffness matrices
plus damper specifications together with the amount of
preloads on damper freedoms are aso included.
Displacement of damper inner and outer freedoms,
corresponding absolute eccentricities, eccentricity of
inner ring relative to outer ring and stability analysis
datain form of eigenvalues are also part of output data.

3-3. TheMain Program

Purpose of the main program is to open
input/output files, initialize data, set system eguations
of motion according to input data, initialize solver

subroutines and print out the results. The
corresponding sub-programs include;

- HARM - INITIAL - PART - FCl
- FCC - FORCE -F1 -F2 - DQG32
- DNEQNF - DLINRG - DMRRRR
-DIVPRK  -DEVLRG -DFFTRF

3-4. Brief Description of Sub-Programs

Within this computer software, the main program
“HARM” callsin 15 subprograms to perform different
numerical tasks. A brief description about individual
subprograms is given in this section. The required
programming syntaxes corresponding to these
subprograms are provided in Table 1.

Tab. 1. Therequired program syntax for all
subprograms called in by program HARM

Program Syntax to call

1 HARM HARM (amp, cpp, akpp)

2 PART PART(la, Ib, & b, c, nr, np, nq, k, f,
f1, 9,01, y, wl)

3 INITIAL INITIAL(seq, loop)

4 FCI FCl(seq, f, mm)

5 FORCE FORCE(seqg, cc)

6 F1, F2 F1(x), F2(x)

7 DQG32 DQG32

8 FCC FCC(nr2, t, g, gprime)

9 DNEQNF | DNEQNF (fcn, errrel, n, itmax, Xguess, X,
fnorm)

10 DLINRG DLINRG (n, a, Ida, ainv, Idainv)

11 DMRRRR | DMRRRR(nra, nca, a, lda, nrb, ncb, b,
Idb, nrc, nc, ¢, Idc)

12 | DIVPRK DIVPRK (ido,n,fcn, t, tend, tol, param, y)

13 | DEVLRG | DEVLRG (n, a, Ida, eval)

14 | DFFTRF DFFTRF (n, seq, coef)

Subprogram “HARM”

The purpose of this subroutine is to build the idealized
system equations of motion based on input data
System mass, damping, and stiffness matrices are input

to this program. It then reads in all the terms, including
constant terms and unbalance terms, in forcing
functions. Subroutine PART is then called in twice, to
reduce degrees of freedom to that corresponding to the
number of non-linear equations. Other parts of program
HBA have access to output from program HARM
through common statements.

Subprogram “PART”

The task of subroutine PART is to reduce the degrees
of freedom to that corresponding to the number of non-
linear equations. It is a general partition routine with
nr, np, and nq defined in the calling program for the
matrix ala, 1a) and with k having either the value of 1
or 2. When option 1 is specified, it is used for the k-
matrix. Option 2 is to partition the ssmatrix (General
theory).

Subprogram “INITIAL”

The purpose of this subroutine is to read in squeeze
film damper parameters, amount of preload on damper
freedoms and initial guessed solutions (seq). Damper
parameters include oil viscosity, clearance, radius,
length and number of dampers involved. It then
calculates bearing parameter. Initial guess values can
be supplied by the user in input file or program readsin
‘seq’ from last solutions. When parameter ‘loop’ isin
use, program reads in ‘seq’ from input file for loop=1,
otherwise it rewinds file ‘INI.DAT’ to update initial
solutions.

Subprogram “FCI”

Subroutine FCI is a general routine setting up the
system of nonlinear equations. From displacements
specified in ‘seq’, subroutine FORCE is called to
evaluate the forces in the x and y directions and return
them as Fourier components. Subroutine FCI
introduces the idealized system to IMSL subroutine
DNEQNF.

Subprogram “FORCE”

The purpose of this subroutine is to evaluate the force
terms arising from sgueeze film dampers. From
displacements specified in “seq”, subroutine FORCE is
caled to evaluate the forces in the x and y directions
and return them as Fourier components in the vector
cc.

SubprogramsF1 and F2

For a given displacement y and z, and velocities dy and
dz, functions F1 and F2 are called to give the damper
forces acting in the y and z directions respectively at a
particular angular position Xx.

Subprogram DQG32

This is a 32-order numerical quadrature integration
subroutine. It is called by subroutine FORCE to
perform squeeze film damper force calculations.
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Subprogram “FCC”

Subroutine FCC is a general routine setting up the
system of linear equations. FCC introduces the
idealized system to subroutine DIVPRK.

Subprogram “DNEQNF”

This subprogram solves a system of nonlinear
equations using a modified Powell hybrid agorithm
and afinite-difference approximation to the Jacobian.

Subprogram “DLINRG”
This subprogram computes the inverse of areal genera
meatrix.

Subprogram “DMRRRR”
This subprogram multiplies two rea rectangular
matrices.

Subprogram “DIVPRK?”

Solves an initial-value problem for ordinary differential
equations using the Runge-Kutta-Verner fifth-order
and sixth order method.

Subprogram “DEVLRG”
The purpose of this subprogram is to compute all
eigenvalues of areal matrix.

Sub program “DFFTRF”
The purpose of this subprogram is to compute the
Fourier coefficients of areal periodic sequence.

3-5. Input File “HBA.INP”

This file contains input data to the main program
HBA. It includes the sets of data which are presented
in Table 2.

Tab. 2. Input data for the computer software

“HARM 2
input to the software description
omstart omend rotor operating speed
omstep
nr nq nk nt nst linear and non linear freedoms
amp system mass matrix
cpp system damping matrix
akpp system stiffness matrix
cons constants in forcing functions
cost cosine terms of forcing functions
sint sine terms of forcing functions
viscrad x| nsfd squeeze film damper parameters
pllpl2 preload on damper freedoms
inikey directive to initial guesses
seq vector of initial guesses

Current version of program HBA, is based on
dimensional parameters. Non-dimensional parameters
may also be used. If so, it is the user’s task to make
necessary adjustments in the program. Since elements
of mass, damping and stiffness matrices are initialized
as zeros in program HBA, the user needs to fill in
nonzero elements only. Constant terms in forcing
functions assumed to correspond to gravity. For those

freedoms required, user supplies amount of masses
only. They are multiplied by constant of gravity inside
HBA. Cosine and sine terms of forcing functions
assumed to rise from the presence of unbaance
masses. Unbalance parameters given by the user is
multiplied by @? in program HBA, to provide
unbalance forces. Squeeze film damper parameters
including oil viscosity, radia clearance, radius, length,
and number of squeeze film dampers should also be
given as input data. Bearing parameter calculation is
also included in the program HBA. Preload assumed to
be effective on damper vertica freedoms, also affected
by gravity. User enters amount of preloads without
including gravity constant which is available in
program HBA. Initid guesses are essentia for
harmonic balance solutions. This program can find its
initial guessed solutions from two sources. If value for
inikey is 01 then program fills in elements of vector
‘seq’ from those data available in input file
‘HBAL.INP. If ‘inikey’ is not equal to Ol then
program rewinds file ‘ini.dat’ and finds initial guesses
from output of last program run.

3-6. Output File“HBA.OUT”

This file contains output data from program HBA.
It includes information about the system under study
such as total degrees of freedom, number of linear and
nonlinear terms, level of sub-harmonics included,
number of Fourier terms used and rotor frequency.
Mass, damping and stiffness matrices plus damper
specifications together with the amount of preloads on
damper freedoms are also included. Displacement of
damper inner and outer freedoms, corresponding
absolute eccentricities, eccentricity of inner ring
relative to outer ring and stability analysis data in form
of eigenvalues are also part of output data.

4. Computer Software Verification

4-1. Flexible Rotor Bearing System — Centralized Damper

Fig. 1 presents a flexible symmetric unbalanced
rotor, the so-called Jeffcott rotor, supported on
identical squeeze film dampers and centralizing springs
of constant radial stiffness. The lumped mass at the
bearing ends is m,, the centralizing spring has stiffness
k, and the rotor stiffness between the central and either
end node is k;. All unbalance is assumed to be at the
disk, resulting in a disk mass eccentricity 4. Viscous
damping at the disk is c;. Damping at the disk is
negligible compared with that provided by the damper,
and hence may be neglected. Since the rotor is
symmetric about the disk, it suffices to consider one
half of the system only. Thus, for cylindrical whirl, the
motion of the system will be described by the plane
motion in the damper of a journa of mass m = m,/2+
m, with unbalance eccentricity p = pm/(m +2m,).
Working frequency extends beyond the pin pin critical
speed of therotor ¢, , centralizing springs are retained

and the rotor is centraly preloaded. Such a system
resultsin synchronous circular orbit type solutions, and
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has been analysed previoudy in the literature for both
equilibrium solutions and their stability in the linear
sense [12]. By virtue of the synchronous nature of the
orhits, such stahility analysis were possible without the
need to resort to Floquet theory, by writing the
perturbed equations of motion with respect to arotating
reference frame, thereby obtaining linear differential
equations with constant coefficients. Once super and/
or sub-harmonics of the excitation frequency are also
present, as they will be in general, such a procedure no
longer removes the periodicity of the coefficientsin the
perturbed equations of motion. Solutions for this
flexible rotor model therefore proved particularly
useful in evaluating the Floquet theory based stability
analysis, since there are circular orbit solutions which
are alleged to be unstable, and indeed, unexpectedly so
[12]. Referring to Fig. 1 the equations of motion are
given by:

Mm%, + &% + K (% — %) = pme’ cosa
Mm%, +¢%, + k(% —X,) = pme’sina
Mm%, + k(% — %) + kX = F,
sz4 + k1(x4 - Xz) + k2X4 = Fz

where
Yy=Xz ad Z=X,

The equations are in the form of Eq. (1) with r =4 and
g = 2. The following values of non-dimensional system
parameters were used to allow comparison with [2];

M, =0.75, M, = 0.25, K, = 0.75/(w/ ®,)*

K, =0.25/(w/ ®,)?,C, = 0.0075/(w/ @),

U =03, o / w;=05.

The equilibrium solutions for various values of the
bearing parameter wy, / w, are reported in [12]. Using
the generalized theory that is developed and presented

in this article, the same frequency response curve was
obtained for @y, / v, = Q3 asindicated in Fig. 3.

Ecc. ratio (e/C)

0.001 | L L |

Rotor speed (Hz)

Fig. 3. Predicted frequency response of circular
orbit eccentricitiesfor the Jeffcott rotor,
(E21 output from program HBA)

(E2 equilibrium solutionsreported in [12])

(U=0.3, M, = 0.25, o/ = 0.5, aop/co = 0.3)

4-2. Flexible Rotor Bearing System-Uncentralized
Damper

The effect of removing the retainer springs from
the fluid film bearings is ssimulated by changing the
amount of gtiffness corresponding to the damper
degrees of freedom. Results are presented in Fig.4.

ratio (e/C)

Ecc.

| . IR |
0.001 10 100

Rotor speed (Hz)

Fig. 4. Predicted frequency response for the Jeffcott
rotor,
(dashed for supported damper, blank line for
unsupported damper)
(U=0.3, M, = 0.25, @/a; = 0.5, /@ = 0.3)

Fig.4 presents a comparison between eccentricity ratios
for the two cases of rotor bearings on nonlinear
sgueeze film bearing with and without spring support.
While the rest of the rotor bearing data are the same as
for the case of centralized damper in section 4.1. In this
figure the dashed line is program HBA output for
damper with spring support and the blank line is
program output for damper without spring support.
While program predictions for the second critical speed
are the same for both cases, predictions of the 1%
critical speed are different. For the amount of
unbalance applied to the rotor at disk location, for
Jeffcott rotor with unsupported fluid film bearing, the
1% critical speed is higher.

5. Conclusions

The ability to theoretically model rotors and
simulate response aids both efficient design of new
rotors and rapid troubleshooting of existing rotors.
Rolling element bearings, fluid film bearings, sedls,
etc. are commonly used in rotating machinery. There
have however been cases of rotors mounted in such
elements exhibiting non-linear behaviour.
Noncircular orbit type dampers, such as unsupported or
un-centralized dampers, have generally necessitated
transient solutions, which are computationally
prohibitive for design studies of large order systems,
particularly for systems with low damping. By utilizing
harmonic balance with appropriate condensation, it is
possible to considerably reduce the number of
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simultaneous nonlinear equations inherent to this
approach.

The harmonic balance approach for finding equilibrium
solutions for general multi-degree of freedom rotor
bearing systems with non-linear supports can result in a
considerable reduction in the number of simultaneous
non-linear equations which need to be solved
iteratively.

Perturbation of the equilibrium solutions result in as
many second order linear differential equations with
periodic coefficients as there are degrees of freedom.
Floquet theory may be conveniently applied to
determine stahility.

The theory of harmonic baances is successfully
developed and is also used for the development of a
computer software for the dynamic analysis of general
multi-degree of freedom rotor bearing systems with
nonlinear support elements.

The versatility of the technique is illustrated on
systems with and without centralizing springs and of
increasing complexity. Of particular interest, is the
applicability of this approach to rotor bearings with
unsupported fluid film bearings with relative large
unidirectional loadings, i.e., at high orbit eccentricities
as occurs when the damper has just lifted off, as well as
to the confirmation of the instability.
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Nomenclature
A I x 1 vector of Fourier coefficients defined by
Egs. (3); k=0,...,n

B, I x 1 vector of Fourier coefficients defined by
Egs. (3); k=0,...,n

B angular velocity for non-dimensionalization
= 1R /[(m +2m)aC?

G- C damping coefficients associated with rotor of

freedom X ..., %,
radial clearance of damper
I'XI  damping and gyroscopic matrix
K rx1  vector of Fourier coefficients defined
by Eqg. (8); k=0,...,n

OO0

d diameter of rotor in Fig. 1.

¥ journal eccentricity; ¢ =¢e/C

E equilibrium value

F I x 1 vector of forces as defined in Eq. (1)
Fy,FZ fluid film force components in the y and z

directions
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h fluid film thickness
I I' XTI identity matrix
k order of Fourier series component; k=0,1,..., n

Ki,Ko stiffness of retainer springs and rotor
segmentsin Fig. 1

I XT stiffness matrix

length of axial land of damper

m/2+m
lumped mass of disk in Fig. 1

lumped mass of each of the bearingsin Fig. 1

I' XTI mass matrix
highest harmonic of truncated Fourier series
integer, usualy 1 or 2

I'XT null matrix

I x 1 null vector
degrees of freedom without nonlinear forces
preload for centralizing the damper
degrees of freedom involving nonlinear forces
I' X I matrices defined by Egs. (12) and (13)
degrees of freedom of rotor bearing system
bearing radiusin Fig. 1

I x 1 vector of Fourier coefficients defined by
Eq. (8); k=1,....n
time

I' X I matrix defined by Egs. (15) and (16)
unbalance parameter,

pm /[(m+2m)C| = p/C
V,W 1 x1 vectors defined by Egs. (19) and (20)

and (15) and (16) respectively

w static load parameter = g / (Cw?)
X, ¥,z coordinate system with x in direction of shaft
rotation and origin located along line joining
bearing centres

I x 1 vector of the degrees of freedom
axia coordinate measured from bearing centre
O, inxdirection; Z=Z/L
a,aq,a location of disk unbalance eccentricities at
timet inFig. 1.
aspeed or frequency ratio; y =w/ w,

4
A defined by Eq. (4)
Y7,
o,

X

cH~

N X

absolute viscosity of lubricant

pim /(M +2my)

p1, P> Unbalance eccentricities at lumped rotor mass
inFig. 1.

Q fundamental frequency of seady date
response

(0] angular velocity of rotor
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