An Approach to The Optimization of Multi-Objective Assignment Problems with Neutrosophic Numbers

Hamiden Khalifa *

Received 16 March 2019; Revised 24 September 2019; Accepted 01 June 2020; Published online 30 June 2020
© Iran University of Science and Technology 2020

ABSTRACT
This paper aims to study the multi-objective assignment problem with emphasis on imprecise costs rather than price information. The NMOAS problem is considered by adding single-valued trapezoidal neutrosophic numbers to the elements of cost matrices. After converting the NMOAS problem into the corresponding crisp Multi-Objective Assignment (MOAS) problem based on the score function, an approach to finding the most preferred neutrosophic solution was discussed. The approach was used through a weighting Tchebycheff problem which was applied by defining relative weights and ideal targets. This approach was more flexible than the standard multi-objective assignment problem and it allowed the Decision-Maker (DM) to choose the targets. Finally, a numerical example was given to illustrate the utility, effectiveness, and applicability of the approach.

KEYWORDS: Multi-objective assignment problem; Neutrosophic numbers; Membership functions; Weighting Tchebycheff problem; Optimal compromise neutrosophic solution.

1. Introduction
Assignment (AS) problem is a well-studied topic in combinatorial optimization and is directly linked to production planning, telecommunication, economy, etc. It deals with the question of how to set n assignees to m tasks in an injective manner for which an optimal assignment can be made in the best possible way. Depending on the objectives, one must optimize different problems ranging from linear AS problem to quadratic and high-dimensional AS problems. Linear AS problem is a particular type of the Linear Programming (LP) problem in which assignees are charged with accomplishing tasks on a one-to-one basis such that the assignment cost (or profit) can be reduced to minimum (or maximum). The best assignee for the task is a perfect description of the AP, where the number of rows and columns is the same (Ehrgot et al., 2016). Bao et al. (2007) developed and solved a multi-objective AS problem. Geetha and Nair (1993) first formulated and solved cost-time AS problem as a multi-criteria decision-making problem.

However, AS problem representing real-world situations involves a set of parameters whose values are assigned by decision-makers. DMs are required to allocate exact values to parameters in conventional approaches. In this case, DM does not precisely know the exact value of parameters; thus, the parameters of the problem are usually defined in an uncertain manner. Bellmann and Zadeh (1970) introduced the concept of fuzzy set theory into the decision-making problem involving uncertainty and imprecision. Zimmermann was the first to solve the LP problem with several objectives through suitable membership functions. Sakawa and Yano (1989) introduced the concept of fuzzy multi-objective linear programming (MOLP) problems. Kiruthiga and Loganathan (2015) reduced the fuzzy MOLP problem to the corresponding ordinary one using the ranking function and, hence, solved it using the fuzzy programming technique. Hamadameen (2018) proposed a technique for solving the fuzzy MOLP problem in which the coefficients of objective functions are triangular fuzzy numbers. Leberling (1981) solved the vector maximum LP problem using a special type of non-linear membership functions. Bit et al. (1992) applied fuzzy programming approach to Multi-Objective Transportation Problem (MOTP). Belacela and Boulasselb (2001) studied multi-criteria AS

Neutrosophic set is considered to be a generalization of crisp set, fuzzy set, and intuitionistic fuzzy set to represent the uncertainty, inconsistency, and incomplete knowledge about a real-world problem. Vidyay et al. (2017) studied the neutrosophic MOLP problem. Pramanik and Banerjee (2018) applied a goal programming strategy to MOLP problem with neutrosophic numbers. Rizk-Allah, R. M. (2018) developed a new compromise algorithm for MOTP which was inspired by Zimmermann's fuzzy programming and the neutrosophic set terminology.

This study attempts to study the Multi-Objective Assignment (MOAS) problem in the neutrosophic environment. An approach to finding the most preferred neutrosophic solution is discussed. The approach is used through a weighting Tchebycheff problem which is applied by defining relative weights and ideal targets. The outline of the paper is organized as follows: Section 2 present some preliminaries. Section 3 formulates the NMOAS problem. Section 4 introduces an approach to obtain neutrosophic optimal satisfactory solution to the MOAS problem. Section 5 gives a numerical example for illustration. Finally, some concluding remarks are reported in Section 6.

2. Preliminaries

In order to discuss the problem conveniently, basic concepts and results of fuzzy numbers, trapezoidal fuzzy numbers, intuitionistic trapezoidal fuzzy numbers, and neutrosophic set are recalled.

Definition 1 (Fuzzy number). A fuzzy number \(\tilde{B} \) is a convex normalized fuzzy set on the real line \(\mathbb{R} \) such that:

1. \(\mu_{\tilde{B}}(x) \) is piecewise continuous,
2. \(\exists x \in \mathbb{R} \), with \(\mu_{\tilde{B}}(x) = 1 \).

Definition 2. (Trapezoidal fuzzy numbers, Kaur and Kumar, 2012). A fuzzy number \(\tilde{B} = (r, s, t, u) \) is a trapezoidal fuzzy number, where \(r, s, t, u \in \mathbb{R} \) and its membership function are defined as follows:

\[
\mu_{\tilde{B}}(x) = \begin{cases}
\frac{x - r}{s - r}, & r \leq x \leq s, \\
1, & s \leq x \leq t, \\
\frac{t - x}{u - t}, & t \leq x \leq u, \\
0, & \text{otherwise},
\end{cases}
\]

Definition 3 (Intuitionistic fuzzy set, Atanason, 1986). A fuzzy set \(\tilde{B} \) is said to be an intuitionistic fuzzy set \(\tilde{B}^{IN} \) of a non-empty set \(X \) if \(\tilde{B}^{IN} = \{x, \mu_{\tilde{B}^{IN}}, \rho_{\tilde{B}^{IN}}: x \in X\} \), where \(\mu_{\tilde{B}^{IN}} \) and \(\rho_{\tilde{B}^{IN}} \) are the membership and nonmembership functions such that \(\mu_{\tilde{B}^{IN}}, \rho_{\tilde{B}^{IN}}: X \rightarrow [0, 1] \), and \(0 \leq \mu_{\tilde{B}^{IN}} + \rho_{\tilde{B}^{IN}} \leq 1 \) for all \(x \in X \).

Definition 4 (Intuitionistic fuzzy number, Atanason, 1999). An intuitionistic fuzzy set \(\tilde{B}^{IN} \) of \(\mathbb{R} \) is called an Intuitionistic fuzzy number if the following conditions hold:

1. There exists \(c \in \mathbb{R} \): \(\mu_{\tilde{B}^{IN}}(c) = 1 \) and \(\rho_{\tilde{B}^{IN}}(c) = 0 \),
2. \(\mu_{\tilde{B}^{IN}}: \mathbb{R} \rightarrow [0, 1] \) is a continuous function such that \(0 \leq \mu_{\tilde{B}^{IN}} + \rho_{\tilde{B}^{IN}} \leq 1 \), for all \(x \in \mathbb{R} \),
3. The membership and nonmembership functions of \(\tilde{B}^{IN} \) are...
Definition 5 (Trapezoidal intuitionistic fuzzy number, Jianqiang and Zhong, 2009).
A trapezoidal intuitionistic fuzzy number is denoted by $B^N = (r, s, t, u, a, s, t, b)$, where $a \leq r \leq s \leq t \leq u \leq b$ with membership and nonmembership functions are defined as follows:

$$\mu_{B^N}(x) = \begin{cases}
\frac{x - r}{s - r}, & r \leq x < s \\
1, & s \leq x \leq t \\
\frac{u - x}{u - t}, & t \leq x \leq u \\
0, & \text{otherwise},
\end{cases}$$

$$\rho_{B^N}(x) = \begin{cases}
\frac{s - x}{s - a}, & a \leq x < s \\
0, & \text{otherwise},
\end{cases}$$

Definition 6 (Neutrosophic set, Smarandache, 1998). A neutrosophic set B^N of non-empty set X is defined as follows:

$B^N = \{(x, I_B^N(x), J_B^N(x), V_B^N(x)) : x \in X, I_B^N(x), J_B^N(x), V_B^N(x) \in]0, 1^+[, \}$

where $I_B^N(x), J_B^N(x), V_B^N(x)$ are truth membership function, an indeterminacy membership function, and a falsity membership function, respectively, and there is no restriction on the sum of $I_B^N(x), J_B^N(x), V_B^N(x)$; therefore, $0^+ \leq I_B^N(x) + J_B^N(x) + V_B^N(x) \leq 3^+$ and $]0, 1^+[$ is a nonstandard unit interval.

Definition 7 (Single-valued neutrosophic set, Wang et al., 2010). A single-valued neutrosophic set B^{SVN} of a non-empty set X is defined as follows:

$B^{SVN} = \{(x, I_B^{SVN}(x), J_B^{SVN}(x), V_B^{SVN}(x)) : x \in X, \}$

where $I_B^{SVN}(x), J_B^{SVN}(x), V_B^{SVN}(x) \in [0, 1]$ for each $x \in X$ and $0 \leq I_B^{SVN}(x) + J_B^{SVN}(x) + V_B^{SVN}(x) \leq 3$.

Definition 8 (Single-valued neutrosophic number, Thamariseli and Santhi, 2016). Let $\tau_b, \varphi_b, \omega_b \in [0, 1]$ and $r, s, t, u \in \mathbb{R}$ such that $r \leq s \leq t \leq u$. Then, a single-valued trapezoidal neutrosophic number, $\bar{b}^N = (r, s, t, u, \tau_b, \varphi_b, \omega_b)$, is a special neutrosophic set on \mathbb{R}, whose truth membership, indeterminacy membership, and falsity membership functions are given below:

$$\mu_{\bar{b}^N}(x) = \begin{cases}
\frac{\tau_b}{s - r}, & r \leq x < s \\
\tau_b, & s \leq x \leq t \\
\varphi_{\bar{b}^N}(u - x), & t \leq x \leq u \\
0, & \text{otherwise},
\end{cases}$$

$$\rho_{\bar{b}^N}(x) = \begin{cases}
\frac{s - \varphi_{\bar{b}^N}(x - r)}{s - r}, & r \leq x < s \\
\varphi_{\bar{b}^N}, & s \leq x \leq t \\
\frac{u - t}{u - x}, & t \leq x \leq u \\
1, & \text{otherwise},
\end{cases}$$

$$\sigma_{\bar{b}^N}(x) = \begin{cases}
\frac{s - x + \omega_{\bar{b}^N}(x - r)}{s - r}, & r \leq x < s \\
\omega_{\bar{b}^N}, & s \leq x \leq t \\
\frac{u - t}{u - x}, & t \leq x \leq u \\
1, & \text{otherwise},
\end{cases}$$

where $\tau_b, \varphi_b, \omega_b$ denote the maximum truth, minimum indeterminacy, and minimum falsity membership degrees, respectively. A single-valued trapezoidal neutrosophic number $\bar{b}^N = (r, s, t, u, \tau_b, \varphi_b, \omega_b)$ may be expressed as an ill-defined quantity of b, which is approximately equal to $[s, t]$.

Definition 9. Let $\bar{b}^N = (r, s, t, u, \tau_b^N, \varphi_b^N, \omega_b^N)$ and $\bar{d}^N = (r', s', t', u', \tau_d^N, \varphi_d^N, \omega_d^N)$ be two single-valued trapezoidal neutrosophic numbers and $v \neq 0$. The arithmetic operations on \bar{b}^N and \bar{d}^N are

1. $\bar{b}^N \oplus \bar{d}^N = (r + r', s + s', t + t', u + u', \tau_b^N \land \tau_d^N, \varphi_b^N \lor \varphi_d^N, \omega_b^N \lor \omega_d^N)$,
An Approach to The Optimization of Multi-Objective Assignment Problems with Neutrosophic Numbers

2. \(\bar{b}^N \otimes \bar{d}^N = ((r - u', s - t', t - s', u' - r); t_{\bar{b}N} \land t_{\bar{d}N}, \phi_{\bar{b}N} \lor \phi_{\bar{d}N}, \omega_{\bar{b}N} \lor \omega_{\bar{d}N}) \),

3. \(\bar{b}^N \otimes \bar{d}^N = \left\{ \begin{array}{l}
((r', s', t', u'); t_{\bar{b}N} \land t_{\bar{d}N}, \phi_{\bar{b}N} \lor \phi_{\bar{d}N}, \omega_{\bar{b}N} \lor \omega_{\bar{d}N}), u, u' > 0 \\
((r, s, t, u); t_{\bar{b}N} \land t_{\bar{d}N}, \phi_{\bar{b}N} \lor \phi_{\bar{d}N}, \omega_{\bar{b}N} \lor \omega_{\bar{d}N}), u < 0, u' > 0 \\
((u', s', t', r'); t_{\bar{b}N} \land t_{\bar{d}N}, \phi_{\bar{b}N} \lor \phi_{\bar{d}N}, \omega_{\bar{b}N} \lor \omega_{\bar{d}N}), u < 0, u' < 0,
\end{array} \right. \)

4. \(\bar{d}^N \otimes \bar{d}^N = \left\{ \begin{array}{l}
((r/u, s/t', t'/s', r/u'); t_{\bar{b}N} \land t_{\bar{d}N}, \phi_{\bar{b}N} \lor \phi_{\bar{d}N}, \omega_{\bar{b}N} \lor \omega_{\bar{d}N}), u, u' > 0 \\
((u'/u, t/t', s'/r', r/u'); t_{\bar{b}N} \land t_{\bar{d}N}, \phi_{\bar{b}N} \lor \phi_{\bar{d}N}, \omega_{\bar{b}N} \lor \omega_{\bar{d}N}), u < 0, u' > 0 \\
((u/r', t/s', s'/t', r/u'); t_{\bar{b}N} \land t_{\bar{d}N}, \phi_{\bar{b}N} \lor \phi_{\bar{d}N}, \omega_{\bar{b}N} \lor \omega_{\bar{d}N}), u < 0, u' < 0,
\end{array} \right. \)

5. \(k\bar{d}^N = f(x) = ((k/1, k/1, k/1), t_{\bar{b}N}, \phi_{\bar{b}N}, \omega_{\bar{b}N}), k < 0, \)

6. \(\bar{d}^{-1} = ((1/u', 1/t', 1/s', 1/r'); t_{\bar{b}N}, \phi_{\bar{b}N}, \omega_{\bar{b}N}, \bar{d}^N \neq 0. \)

Definition 10 (Score and Accuracy functions of single valued trapezoidal neutrosophic number).

A two single-valued trapezoidal neutrosophic numbers, \(\bar{b} \) and \(\bar{d} \), can be compared based on the score and accuracy functions as follows:

1. Accuracy function \(AC(\bar{b}^N) = \left(\frac{1}{16} \right) [r + s + t + u] + \left[\mu_{\bar{b}N} + (1 - \rho_{\bar{b}N}(x)) + (1 + \sigma_{\bar{b}N}(x)] \right. \)

2. Score function \(SC(\bar{b}^N) = \left(\frac{1}{16} \right) [r + s + t + u] + \left[\mu_{\bar{b}N} + (1 - \rho_{\bar{b}N}(x)) + (1 - \sigma_{\bar{b}N}(x)] \right. \)

Definition 11. The order relations between \(\bar{b}^N \) and \(\bar{d}^N \) based on \(SC(\bar{b}^N) \) and \(AC(\bar{b}^N) \) are defined as follows:

1. If \(SC(\bar{b}^N) < SC(\bar{d}^N) \), then \(\bar{b}^N < \bar{d}^N \)

2. If \(SC(\bar{b}^N) = SC(\bar{d}^N) \), then \(\bar{b}^N = \bar{d}^N \)

3. If \(AC(\bar{b}^N) < AC(\bar{d}^N) \), then \(\bar{b}^N < \bar{d}^N \)

3. Problem Definition and Solution Concepts

3.1. Assumptions, index, and notation

3.1.1. Assumption

Assume that there are \(n \) jobs that must be performed by \(n \) persons, where the costs depend on specific assignments. Each job must be assigned to one and only one person and each person must perform one and only one job.

3.1.2. Index

i: Persons
j: Jobs
k: Number of objective functions

3.1.3. Notation

\(c_{ij} \): Cost of the \(i \)th person assigned to the \(j \)th job
\(x_{ij} \): Number of the \(j \)th jobs assigned to the \(i \)th person

Consider the following single-valued trapezoidal neutrosophic (NMOAS) problem below:

\[\text{(NMOAS)} \quad \min \ \tilde{Z}_k = \sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{c}_{ij}^k x_{ij}, k = 1, 2, ..., K \]

Subject to

\[\sum_{j=1}^{n} x_{ij} = 1, j = 1, 2, ..., n \] (only one person would be assigned the \(j \)th job)

\[\sum_{i=1}^{n} x_{ij} = 1, i = 1, 2, ..., n \] (only one job selected by the \(i \)th person)

\(x_{ij} = 0 \ or \ 1 \)

where \(\tilde{c}_{ij}^k \) are single-valued neutrosophic numbers.

Definition 12. A point \(x \) that satisfies the constraints in the NMOAS problem is said to be a neutrosophic feasible point.

Definition 13. A neutrosophic feasible point \(x^* \) is called single-valued trapezoidal neutrosophic efficient solution to Problem (1) if and only if there does not exist another \(x \) such that
\[\tilde{Z}(x, \tilde{c}^N) \leq \tilde{Z}(x^*, \tilde{c}^N), \text{ and } \tilde{Z}(x, \tilde{c}^N) \neq \tilde{Z}(x^*, \tilde{c}^N). \]

According to the score function in Definition 10, the NMOAS problem is converted into the following crisp MOAS problem as follows:

\[
\text{(MOAS)} \quad \min \ Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}, \quad k = 1, 2, \ldots, K
\]
Subject to
\[
\sum_{i=1}^{n} x_{ij} = 1, j = 1, 2, \ldots, n \quad \text{(only one person would be assigned the } j\text{th job)}
\]
\[
\sum_{j=1}^{n} x_{ij} = 1, i = 1, 2, \ldots, n\text{(only one job selected by the } i\text{th person)}
\]
\[x_{ij} = 0 \text{ or } 1. \]

Definition 14 (Compromise solution, Leberling, 1981). A feasible vector \(x^* \in S \) is called a compromise solution to the MOAS problem if and only if \(x^* \in M \) and \(Z(x^*) \leq \wedge_{k \in S} Z(x) \), where \(\wedge \) stands for "minimum" and \(M \) is the set of efficient solutions.

The MOAS problem will be solved by the weighting Tchebycheff method as follows:

\[
\min x \ \max_{1 \leq k \leq K} \{ y_k(Z_k - Z_k^*) \},
\]
Or equivalently

\[
\min \{ \beta : y_k(Z_k - Z_k^*) \leq \beta, k = 1, 2, \ldots, K \},
\]
where \(y_k \geq 0, k = 1, 2, 3, \ldots, K \), and \(Z_k^* \) is the individual maximum.

Step 3: Calculate the individual minimum and maximum values of each objective function of the MOAS problem under the given constraints,

Step 4: Compute the weight through the relation

\[
y_k = \frac{x_k - z_k}{\sum_{k=1}^{K}(z_k - z_k^*)},
\]
where \(z_k^* \) is the individual maximum and \(z_k \) is the individual minimum.

Step 5: Formulate the following problem

\[
\min \beta
\]
Subject to

\[
y_k(Z_k - Z_k^*) \leq \beta, k = 1, 2, \ldots, K,
\]
\[
\sum_{i=1}^{n} x_{ij} = 1, i = 1, 2, \ldots, n
\]
(only one person would be assigned the \(j\)th job)

\[
\sum_{j=1}^{n} x_{ij} = 1, i = 1, 2, \ldots, n
\]
(only one job selected by the \(i\)th person)

\[x_{ij} = 0 \text{ or } 1. \]

Step 6: Solve the above problem using Lingo Package to obtain the best compromise solution \(x^*_{ij} \) and the corresponding optimum value \(\beta^* \).

4. Solution Procedure

This solution procedure is based on the premise that the best-compromise neutrosophic solution has the minimum combined deviation from the ideal point, \(Z^* \), where

\[Z_k^* = \min x \ \sum_{k=1}^{K} (x_k), \quad k = 1, 2, 3, \ldots, K. \]

The steps of the solution procedure are given below:

Step 1: Formulate the NMOAS problem,

Step 2: Convert the NMOAS problem into the corresponding crisp MOAS problem using the score function,

5. Numerical Example

Consider the following cost matrices

\[\tilde{c}^N_1 = \begin{bmatrix} 10 \ N_1 \\ 13 \ N_1 \\ 8 \ N_1 \end{bmatrix}, \quad \text{and } \tilde{c}^N_2 = \begin{bmatrix} 13 \ N_2 \\ 15 \ N_2 \\ 8 \ N_2 \end{bmatrix}. \]

Then, the mathematical model of NMOAS problem can be formulated as follows:

\[
\begin{align*}
\text{Min } Z_1^N & = \left(10^N x_{11} + \tilde{8}^N x_{12} + \tilde{15}^N x_{13} + \tilde{13}^N x_{21} + \tilde{10}^N x_{22} + \tilde{13}^N x_{23} + \tilde{8}^N x_{31} \right) \\
& \quad + 10^N x_{32} + \tilde{9}^N x_{33} \\
\text{Min } Z_2^N & = \left(13^N x_{11} + \tilde{15}^N x_{12} + \tilde{8}^N x_{13} + 10^N x_{21} + 20^N x_{22} + \tilde{12}^N x_{23} + \tilde{15}^N x_{31} + \tilde{10}^N x_{32} \right) \\
& \quad + \tilde{12}^N x_{33}
\end{align*}
\]

Subject to

\[
\sum_{i=1}^{3} x_{ij} = 1, \quad j = 1, 2, 3; \quad \sum_{j=1}^{3} x_{ij} = 1, \quad i = 1, 2, 3;
\]
\[x_{ij} = 0 \text{ or } 1. \]

International Journal of Industrial Engineering & Production Research, June 2020, Vol. 33, No. 2
An Approach to The Optimization of Multi-Objective Assignment Problems with Neutrosophic Numbers

where
\[\bar{g} = ((13,18,20,24); 0.6, 0.4, 0.5), \bar{f} = ((14,16,21,23); 0.7, 0.5, 0.3), \]
\[\bar{10} = ((14,17,21,28); 0.8, 0.2, 0.6), \bar{2} = ((6,10,13,15); 0.7, 0.3, 0.4), \]
\[\bar{3} = ((15,18,23,30); 0.9, 0.2, 0.3), \bar{5} = ((20,25,30,35); 0.8, 0.4, 0.2), \]
\[\bar{0} = ((28,32,35,40); 0.9, 0.3, 0.2). \]

By using the score function of the single-valued trapezoidal neutrosophic number, the above problem becomes as follows:

\[
\begin{align*}
\text{Min } z_1 &= \left(10 \cdot x_{11} + 8x_{12} + 15x_{13} + 13x_{14} + 12x_{22} + 13x_{23} + 8x_{31} \right) \\
\text{Min } z_2 &= \left(13x_{11} + 15x_{12} + 8x_{13} + 10x_{14} + 20x_{22} + 12x_{23} + 15x_{31} \right)
\end{align*}
\]
Subject to
\[
\sum_{i=1}^{3} x_{ij} = 1, \quad j = 1, 2, 3; \quad \sum_{j=1}^{3} x_{ij} = 1, \quad i = 1, 2, 3,
\]
\[x_{ij} = 0 \text{ or } 1. \]

The solution of each objective function of Problem (2) is given under the given constraints as follows:

\[z_{1\text{min}} = 29, \quad z_{1\text{max}} = 38, \quad z_{2\text{max}} = 42, \quad z_{2\text{min}} = 28. \]

Use Relation (1) to calculate the weights

\[y_1 = \frac{38 - 29}{(38-29)+(42-28)} = \frac{9}{23}, \quad \text{and} \quad y_2 = \frac{42 - 28}{(38-29)+(42-28)} = \frac{14}{23}. \]

Substituting from (5) and (6) into (1), we obtain:

\[
\begin{align*}
\text{Min } \beta \\
\text{Subject to} \\
\frac{9}{23} \left(10x_{11} + 8x_{12} + 15x_{13} + 13x_{21} + 12x_{22} + 13x_{23} + 8x_{31} \right) &+ 10x_{32} + 9x_{33} - 29 \\
\frac{14}{23} \left(13x_{11} + 15x_{12} + 8x_{13} + 10x_{21} + 20x_{22} + 12x_{23} + 15x_{31} \right) &+ 10x_{32} + 12x_{33} - 28 \leq \beta,
\end{align*}
\]
\[x_{11} + x_{12} + x_{13} = 1, \]
\[x_{21} + x_{22} + x_{23} = 1, \]
\[x_{31} + x_{32} + x_{33} = 1, \]
\[x_{11} + x_{21} + x_{31} = 1, \]
\[x_{12} + x_{22} + x_{32} = 1, \]
\[x_{13} + x_{23} + x_{33} = 1, \]
\[x_{ij} = 0 \text{ or } 1. \]

Tab. 1. The optimal compromise solution to Problem (7)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{12} = 1$</td>
<td>$\beta^* = 0.28$</td>
</tr>
<tr>
<td>$x_{21} = 1$</td>
<td>$z_{1}^* = 30$</td>
</tr>
<tr>
<td>$x_{33} = 1$</td>
<td>$z_{2}^* = 37$</td>
</tr>
</tbody>
</table>

Tab. 2. The optimal compromise neutrosophic solution to Problem (3)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{12} = 1$</td>
<td>$z_{1}^* = ((42,52,64,77);0.6,0.5,0.5)$</td>
</tr>
<tr>
<td>$x_{21} = 1$</td>
<td>$z_{2}^* = ((40,52,64,78);0.7,0.4,0.6)$</td>
</tr>
<tr>
<td>$x_{33} = 1$</td>
<td></td>
</tr>
</tbody>
</table>

6. Concluding Remarks

In this paper, interval-valued trapezoidal Neutrosophic Multi-Objective Assignment (NMOAS) problem was studied. A new approach was proposed to solve the crisp (MOAS) problem. The approach was used by a weighting...
The Tchebycheff method which was applied by defining relative weights and ideal targets. The advantage of this approach is more flexible than the standard multi-objective assignment problem, where it allows the decision-maker (DM) to choose the desired targets.

References

An Approach to The Optimization of Multi-Objective Assignment Problems with Neutrosophic Numbers

Follow This Article at The Following Site:

Khalifa H. An approach for optimization of multi-objective assignment problems with neutrosophic numbers. IJIEPR. 2020; 31 (2) :287-294
URL: http://ijiepr.iust.ac.ir/article-1-890-en.html