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scheduling, and resource allocation. CF groups 
machines and parts into manufacturing cells.  
Studies considering uncertainty can be 
categorized into three approaches: stochastic 
programming approach, fuzzy programming 
approach, and robust optimization approach. In 
this article, stochastic programming approach for 
CF problem is presented. The inter-arrival time 
between two consecutive customers and service 
time are considered stochastic. In literature 
review carried out for CM with stochastic 
programming approach, the demand, the 
processing time, the reliability, and the mix 
product had been considered stochastic, which 
the following studies taken in these contexts are 
presented, respectively. 
Harhalakis et al. [2] assumed the product demand 
as a random variable, in CF problem. They 
sought out the minimization of expected inter-cell 
material handling cost in their model. Asgharpour 
and Javadian [3] considered three normal, 
binomial, and beta distributions for demand and 
minimized the total sum of the machine purchase 
cost, the operating cost, the inter-cell and intra-
cell material handling costs, the machine 
relocation cost, and the absolute sum of the 
demand deviation from mean for part types over 
the planning horizon. CAO and Chen [4] offered 
the CF with supposed scenarios for products 
demand. In this model, an occurrence probability 
had been assigned to each scenario. Objective 
function of this model minimized machine cost 
and expected inter-cell material handling cost. 
Tavakkoli-Moghaddam et al. [5] examined a 
mathematical model to solve a facility layout 
problem in CM systems with stochastic demands. 
The main purpose of their study is to minimize 
the total costs of inter- and intra-cell movements 
in both machine and cell layout problems in CM 
system simultaneously. They considered part 
demands as an independent variable with the 
normal probability distribution. Egilmez and Suer 
[6] proposed a two-phase hierarchical 
methodology to find the optimal manpower 
assignment and cell loads simultaneously. In the 
first phase, the manufacture cells are formed with 
objective function of the production rate 
maximization. Then, manpower with objective 
function of the number of labors minimization 
has been assigned to the manufacture cells. In 
both models, the processing time and demand 
have a normal distribution. Ariafar et al. [7] 
purposed the model for layout cells in the shop 
and machines in the machine cells. Demand has 
been considered as stochastic and with the 
uniform distribution. This model minimizes the 

inter-cell and intra-cell material handling costs. 
Egilmez et al. [8] viewed uncertainty of 
processing times and customer demand with a 
normal distribution. The objective is to design a 
CM system with product families that are formed 
with most similar products and minimum number 
of cells and machines for a specified risk level. 
Ariafar et al. [9] examined the effect of demand 
fluctuation on cell layout in shop and machine 
layout in cell. This model minimizes the inter-cell 
and intra-cell material handling costs. They 
assumed which demand has a normal 
distribution. Rabbani et al. [10] proposed a bi-
objective CF problem with demand of products 
expressed in a number of probabilistic scenarios. 
Their model in the first objective minimizes the 
sum of machine constant cost, expected machine 
variable cost, cell fixed-charge cost, and expected 
intercell movement cost; in the second objective, 
it minimizes expected total cell loading variation. 
Egilmez and Suer [11] offered two models for 
analyzing the interaction between CF stage and 
cell scheduling stage in terms of the risk taken by 
decision-makers. The first model formed 
manufacturing cells with the objective of 
maximizing the total pair-wise similarity among 
products assigned to cells and minimizing the 
total number of cells. The second model 
maximizes the number of early jobs. The demand 
and the processing time in both models are 
random variables with a normal distribution. 
A review of studies done in the processing time 
area is provided in the following. Saidi-Mehrabad 
and Ghezavati [12] assumed the processing time 
and the time between two successive arrivals to 
cell described by exponential distribution in CF 
problem. For analyzing this problem, they used 
queuing theory in which the server is the machine 
and the customer is the part. The aim of this 
model is to minimize the summation of three 
costs: (1) the idleness costs for machines; (2) the 
total cost of sub-contracting for exceptional 
elements (exceptional elements are defined as 
parts which must be processed in different cells 
and therefore they have intercellular movements); 
(3) the cost of resource underutilization. 
Ghezavati and Saidi-Mehrabad [13] proposed a 
mathematical model for CM problem integrated 
with group scheduling in an uncertain space. 
Within this model, CF and scheduling decisions 
are optimized concurrently. It is assumed that the 
processing time of parts on machines is stochastic 
and described by discrete scenarios. Their model 
minimizes total expected cost including 
maximum tardiness cost among all parts, cost of 
subcontracting for exceptional elements and the 
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cost of resource underutilization. Egilmez and 
Suer [14] presented a mathematical model for CF 
which minimized the number of tardy jobs and 
total probability of tardiness. They assumed that 
the processing time of each job, has a normal 
distribution. Ghezavati and Saidi-Mehrabad [15] 
assumed that each machine works as a server and 
each part is a customer where servers should 
provide service customers. Accordingly, they 
defined formed cells as a queue system which can 
be optimized by queuing theory. The optimal 
cells and part families were formed by 
maximizing the probability that a server is busy. 
Ghezavati [16] evaluated CF problem, 
scheduling, and layout decisions, concurrently. 
Also, he considered processing time as stochastic 
with discrete scenarios under supply chain 
characteristics. This model minimized holding 
cost and the costs regarded associated with the 
suppliers’ network in a supply chain in order to 
outsource exceptional operations. Fardis et al. 
[17] examined CF problem while considering 
stochastic parameters, the arrival rate of parts into 
cells, and machine service rate which have been 
described by exponential distribution. The 
objective function of the presented model 
minimized summation of machines’ cost of 
idleness, sub-contracting cost for exceptional 
parts, non-utilizing machine cost, and holding 
cost of parts in the cells. 
However, the reliability of machine can impact 
on the processing time. But, due to the numerous 
of articles in this issue, they were presented 
separately. Das et al. [18] presented a multi-
objective mixed integer-programming model 
which interval between failures is distributed 
exponentially. In the first objective, it minimized 
the variable cost of machining operations, the 
inter-cell material handling costs, and the penalty 
cost of machine non-utilization; in the second 
objective, it maximized system reliability with 
minimizing failure rate. Das et al. [19] proposed a 
preventive maintenance planning model for the 
performance improvement of CM systems in 
terms of machine reliability and resource 
utilization. Considering machine failure times 
following a Weibull distribution, the presented 
model in their study determines a preventive 
maintenance interval and a schedule for 
performing preventive maintenance actions on 
each machine in the cell by minimizing the total 
maintenance cost and the overall probability of 
machine failures. Das et al. [20] investigated a 
new approach for the design of CM system by 
considering machine reliability within a multi-
objective optimization framework which seeks to 

strike a balance between the costs and reliability 
goals. The CM system design problem consists of 
assigning the machines to cells, and selecting for 
each part type, the process route with the highest 
overall system reliability for each part type while 
minimizing the total costs of manufacturing 
operations, machine under-utilization, and inter-
cell material handling. It has assumed that 
machine failure and repair times are 
exponentially distributed. In another model, 
based on Weibull distribution and exponential 
distribution approach, as Das [21] suggested, 
designer/user selects the suitable failure rate for a 
specific situation. In this article, when system 
reliability expectation is high, the Weibull 
distribution may be viewed to generate better cell 
configuration. Jabal Ameli et al. [22] investigated 
the effects of machine breakdowns in the CF 
problem with a new perspective. The results of 
their study showed that although considering 
machine reliability can increase the movement 
costs, it significantly reduces the total costs and 
total time for the CM system. Jabal Ameli and 
Arkat [23] conducted a study on the 
configuration of machine cells considering 
production volumes and process sequences of 
parts. Further, they studied on alternative process 
routings for part types and machine reliability 
considerations. They found out that the reliability 
consideration has significant impacts on the final 
block diagonal form of machine-part matrices. 
Chung et al. [24] found that machine reliability 
has meaningful effects on reducing the total 
system cost in CF problem. Rafiee e al. [25] 
proposed the integrated approach to analyze the 
CM system better, since different aspects of the 
manufacturing system are interrelated. Weibull 
distribution is assigned to machine failure time 
distribution; to conquer the breakdowns, 
preventive and corrective actions were 
considered. Arkat et al. [26] presented CF 
problem in general state while considering the 
reliability. The generalized CF problem follows 
the selection of the best process plan for each part 
and assigning of machines to the cells. In this 
model, it is assumed that the number of 
breakdowns for each machine follows a Poisson 
distribution with a known failure rate. Because of 
the probabilistic nature of the machine 
breakdowns, a set of chance constraints have 
been introduced. These constraints guarantee that 
the number of breakdowns for each machine 
never exceeds a predefined percentile. The 
objective function of this model minimized 
Intercellular and intracellular movement costs 
and machine breakdown costs. 
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μ୨: mean service rate for machine j (mean number 
of customers served per unit time by machine j). 
M୫ୟ୶: The maximum number of machines per 
cell. 
MTBF୨: Mean time between failures for machine 
j 
MTTR୨ : Mean time to repair for machine j 

a୧୨ ൌ ቄ1 if	part	i	is	to	be	processed	on	machine	j
0 																																																				otherwise.

	

Decision variables 

x୧୩ ൌ ቄ1 			if	part	i	is	assigned	to	cell	k
0 																																			otherwise

 

y୨୩ ൌ ቄ1 if	machine	j	is	assigned	to	cell	k
0 																																								otherwise

 

2-2. Mathematical model 
Approach presented by the Ameli et al. [22] was 
used for considering the reliability. For 
investigation of the effect of the reliability on the 
CF problem, two definitions are presented. The 
number of machine breakdowns, N (t), can be 
acquired by dividing the production time by the 
MTBF. 
 

(1)Nሺtሻ ൌ
t

MTBF
 

 
By multiplying the MTTR by the number of 
breakdowns calculated in Eq. (1), the total repair 
time, T (t), can be obtained as follows: 
 

(2)Tሺtሻ ൌ
t ൈ MTTR
MTBF

 

 
In order to obtain the total time for a machine, the 
repair time for the machine is added to its 
production time. 
 

(3)

mean	of	total	time	for	machine	j

ൌ
E୨ሺtሻ ൈ MTTR୨

MTBF୨
൅ E୨ሺtሻ

ൌ
MTTR୨

μ୨ ൈ MTBF୨
൅
1
μ୨

 

mean	of	total	time	for		machine	j

ൌ
1
μ୨
ቆ
MTTR୨ ൅ MTBF୨

MTBF୨
ቇ 

 
Where	E୨ሺtሻ is the production time expectation 
for machine j. Finally, production rate can be 
obtained considering the reliability as follows: 
 

(4)
the	production	rate	for	machine	j

ൌ μ୨ ቆ
MTBF୨

MTTR୨ ൅ MTBF୨
ቇ 

 
As might be expected, the value of production 
rate is reduced by considering the reliability. As 

mentioned in the above contents, the reliability 
has affects only on the production rate. 
According to the queuing model and the Fig. 1, 
the part arrival time for processing on a particular 
machine is equivalent to the most minimization 
of the part arrival time for processing. Because 
the inter-arrival time between two consecutive 
customers has exponential distribution, then the 
most minimization of the part arrival time for 
processing has exponential distribution with 
parameter λୣ୤୤ (effective arrival rate) (Frederick 
and HillIer [34]). λୣ୤୤ can be computed as 
follows: 

λୣ୤୤ ൌ ෍λ୧

୬

୧ୀଵ

 

Where λ୧ is arrival rate for part ݅, and ݊ is the 
number of parts that is processed on the same 
machine. Based on the presented description, the 
proposed model can be formulated as follows: 
 

(5)Min z ൌ ෍෍෍a୧୨x୧୩൫1 െ y୨୩൯

୔

୧ୀଵ

୑

୨ୀଵ

େ

୩ୀଵ

 

(6)s. t:෍x୧୩

େ

୩ୀଵ

ൌ 1 ∀i 

(7)෍y୨୩ ൌ 1

େ

୩ୀଵ

∀j 

(8)෍y୨୩ ൑ M୫ୟ୶

୑

୨ୀଵ

∀k 

(9)෍෍ λ୧a୧୨x୧୩y୨୩ ൏ μ୨ ቆ
MTBF୨

MTTR୨ ൅ MTBF୨
ቇ

୔

୧ୀଵ

େ

୩ୀଵ

∀j

(10)x୧୩ , y୨୩ ∈ ሼ0,1ሽ ∀i, j, k 
 
Constraint (5) minimizes the inter-cell 
movements of parts. Constraint (6) guarantees 
that each part must be allocated to one cell only. 
Constraint (7) guarantees that each machine must 
be allocated to one cell only. Constraint (8) 
guarantees that the number of machines to be 
allocated to any cell should be less than the 
maximum number of machines allowed in each 
cell. Constraint (9) avoids instability of queuing 
system, that is, the effective arrival rate will 
necessarily be less than service rate. Constraint 
(10) specifies the type of decision variables. 
In the proposed mathematical model, the 
objective function (5) and constraint (9) are 
nonlinear. For linearization, new binary integer 
variable V୧୨୩ is defined which is computed by the 
following equation: 

(11)V୧୨୩ ൌ x୧୩ ൈ y୨୩ ∀i, j, k 
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For linearization, the objective function (5) and 
constraint (9) in the following equations should 
be added to the proposed model by enforcing 
these two linear inequalities simultaneously: 
 

(12)  V୧୨୩ െ x୧୩ െ y୨୩ ൅ 1.5 ൒ 0 ∀i,
(13)  1.5V୧୨୩ െ x୧୩ െ y୨୩ ൑ 0 ∀i, j, k

 
3. The Proposed Algorithms 

The CF problem is NP-hard problem (King and 
Nakornchai [35]). Therefore, precise solution 
procedures and commercial optimization 
software are unable to reach global optimum in 
an acceptable amount of time for medium- and 
large-sized scale problems. To deal with this 
deficiency, two algorithms based on MPSO and 
GA metaheuristics have been developed in this 
paper. 

3-1. The MPSO algorithm 
Particle swarm optimization (PSO) algorithm by 
Kennedy and Eberhart (Kennedy and Eberhart 
[36]; Eberhart and Kennedy [37]) has been 
presented for problems which have continuous 

solution space. PSO is a nature-based 
evolutionary algorithm and starts with an initial 
population of random solutions. Each potential 
solution is called a particle (xሬԦ). Particles move 
around in a multidimensional search space, and 
during movement, each particle adjusts its 
position based on its own past and the experience 
of neighbor particles. Particle’s fitness is 
compared with its pbest୧ (value of the best 
function resultfor particle i	so	far). If existing 
value is better than pbest୧, then set pbest୧ equals 
the current value, and p୧ equals the current 
location xሬԦ୧ in multidimensional space. for all 
particles, value of the best function result so far is 
called gbest, and its location is assigned to p୥. In 
the following, the proposed PSO algorithm is 
illustrated.  

3-1-1. Particle structure 
The particle representation involves two sections: 
the first section indicates the cells assigned to 
machines; the second section represents the cells 
assigned to parts. The particle used for the 
proposed model is presented in Fig. 2. 

 
 

Part P ⋯ Part2 Part1 Machine M ⋯ Machine2 Machine1  

3 ⋯ 2 3 1 ⋯ 2 1 the cell number 

Fig. 2. Sample of particle structure 
 
3-1-2. The proposed generating initial 
population 
To present a qualified initial population, a 
heuristic method that always produces a feasible 
solution is proposed. The heuristic method is 
presented in Fig. 4. In the first step, machines are 
allocated to cells based on capacity of cells; in 
the second step, parts are allocated to cells 
considering constraint (9) for all machines. 
 
3-1-3. Improvement procedure 
In this phase, the linearization objective function 
is used as the fitness function of the MPSO 
method. The updating process is based on xሬԦ୧, pሬԦ୧, 
and pሬԦ୥, and it works as follows. In the original 
PSO process, the velocity of each particle is 
iteratively adjusted, so that the particle 
stochastically oscillates around pሬԦ୧ and pሬԦ୥ 
locations. In fact, the velocity of a particle must 
be understood as an ordered set of 
transformations that operates on a solution. 
Therefore, in each particle of MPSO algorithm, 
(xሬԦ୧ െ pሬԦ୧) and (xሬԦ୧ െ pሬԦ୥) indicate the necessary 
movements to modify from the location given by 
the first term to the location given by the second 

term of each expression. The difference between 
xሬԦ୧ and pሬԦ୧ represents the changes that will be 
needed to move the particle i from xሬԦ୧ to pሬԦ୧. If the 
difference between a given element of xሬԦ୧ and pሬԦ୧ 
is not null, it means that the mentioned position is 
susceptible to change through operations 
described below. 
A new vector P is generated to record the 
positions, where xሬԦ୧ and pሬԦ୧ elements are not equal. 
The vector Q is defined by the same length with 
vector P. Binary elements for vector Q are 
randomly generated. In any position of vector Q, 
if the element is 0, the change is not performed; 
but if the element is 1, the element of the same 
position of vector P is selected. This element in 
the vector P shows the position of vector pሬԦ୧ 
which should be copied in xሬԦ୧. Then, the 
feasibility of constraints (8) and (9) are evaluated. 
The procedure continues, if it is true; otherwise, 
the made changes return and the next element of 
vector P will be tested, which is specified by 
vector Q (see Fig. 3). A similar process is done to 

update the new location x′ሬሬԦ୧ by	pሬԦ୥ and to obtain 
the new location of		xሬሬԦ୧. Similarly, the feasibility 
of constraints (8) and (9) are examined, and 
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pbest୧ (the best value of each particle) and gbest 
(the best value of the whole swarm) are 
calculated by the fitness function. Finally, a 
criterion for stopping algorithm (maximum 

number of iterations) is examined. This 
procedure is repeated for any particle. Flowchart 
of the MPSO algorithm is presented in Fig. 5. 

 

 
Fig. 3. An example of how to conduct the first stage MPSO algorithm 

 
3-2. The proposed genetic algorithm 
Genetic algorithm has been derived from natural 
selection in biology. GA follows some steps to 
find better solutions. At first, the initial solution 
population is generated randomly or used by a 
special heuristic. Then, some members of the 
generated populations are selected considering 
evaluation function, which is called fitness 
function. Members with higher fitness can be 
selected by the high probability. So, members 
with less fitness are substituted by the better 
ones. This procedure is repeated until it reaches a 
certain number of iterations (Mahdavi et al. [38]).  
GA chromosome structure for this model is like 
particle structure for MPSO. The pseudo code of 
main steps of the proposed GA are as follows: 
1. Initial population is generated using the 

proposed heuristic algorithm (see Fig. 4). 
2. The fitness value of a chromosome is 

calculated by the linearization of objective 
function.  

3. Producing a new population is based on the 
repetition of the following steps: 

3.1. Crossover operator: 
3.1.1. Selection of two-parent chromosome in one 

population is based on the tournament 
selection method. Tournament selection 
involves running several "tournaments" 
among a few individuals chosen (two or 
three) at random from the population. The 
winner of each tournament (the one with 
the best fitness) is selected for crossover. 

3.1.2. Two parents are selected from the selection 

population. Then, a number between 1 and 
M + P (M is the number of machines, and P 
is the number of parts) is selected. A single 
crossover point on both parent’s 
chromosome is selected. All data beyond 
that point in either chromosome is swapped 
between the two parent chromosomes. The 
resulting combinations are the children. 
After crossover, the feasibility of 
constraints (8) and (9) are evaluated. The 
procedure continues if it is true; otherwise, 
the made change returns.  

3.2. The fraction of the initial population is 
selected stochastically, and then mutations 
are performed on them. Used mutation 
alters one array value in a chromosome 
from its initial state. A number between 1 
and M + P is selected. Then, mutation 
operator of the source (Mahdavi et al. [38]) 
is used for the mutation. After mutation, the 
feasibility of constraints (8) and (9) is 
evaluated. The procedure continues if it is 
true; otherwise, the made change returns. 

4. The size of the next population is the same 
as the previous one, which is derived from 
selecting the best solutions by comparing 
the previous generations and the solutions 
generated by mutation and crossover 
operators. 

5. Check stopping criteria (number of 
iterations). 

6. If the stopping condition is not met, go to 
step two. 

 

݅ݔ ൌ ሾ3		1		1		2		2ሿ
݅݌ ൌ ሾ2		1		2		3		2ሿ

ൠ → ݅ݔ െ ݅݌ ൌ ሾ1 0 െ 1 െ 1 0ሿ → ൜
ܲ ൌ ሾ1 3 4ሿ
ܳ ൌ ሾ1 0 1ሿ

ൠ → ݅ݔ
′ ൌ ሾ2		1		1		3		2ሿ 
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Fig. 4. Heuristic algorithm to generate a feasible initial population 

 

r=1 (index for population) 

The number of all machines of the 
cell =0 

i=1 (index for machine and part) 

i≤M+P i≤M+P+1 
Finding the value of the 
fitness function 

r←r+1 

population≤r 

Stop 

i≤M 

Generate a random integer 
between 1 to C→d 

The number of assigned 
machines to cell d൑  ௠௔௫ܯ

 

	ሺparticleሻ	ܺሺ݅ሻ ←  ࢊ

The number of machines of the cell d +1→ the number of 
machines of the cell d   

i←i+1 

Generate a random integer between 
1 to C→d 

Is there a machine in all 
cells that its queue length 

is infinite? 

Is the machine queue 
length in the cell d, 

infinite? 

The part i on which machines need to 
be processed? 

Adding the arrival rate of the part i to 
the queue length machines that are 
needed to process on them

Is there the machine that its queue 
length is infinite? 

Subtract the arrival rate of part 
i of the queue length of 
machines that are needed to 
process on them 

r←r-1 
i=M+P+1 
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Fig. 5. Flowchart of the MPSO algorithm 

 
4. Computational Results 

This section describes some computational 
experiments which are implemented to evaluate 
the efficiency and performance of the proposed 
GA and MPSO algorithms in finding solutions 
with high quality. For this purpose, 19 sample 
problems are defined, and then solved by Lingo 
Software’s B&B algorithm, MPSO, and GA. 
Finally, generated solutions will be compared 

with each other and with other solutions quality 
and solving time criteria. The proposed model is 
coded in LINGO 8.0 optimization software, and 
the proposed metaheuristic algorithms are coded 
in MATLAB 2010a on a computer with 2.99 GB 
RAM and core i3 with 3.1 GHz processor. For 
each problem, 5400 seconds (1.5 hours) are 
allowed to run. In B&B algorithm (obtained by 
Lingo software package), if the problem is solved 

۾ ←Positions where the elements ܠሬሬԦܑ  and ܘሬሬԦܑ  are not equal  

Generated Q and set j=1 

If  ۿሺܒሻ ൌ 1, the change is made (namely, ܠሬԦܑ൫۾ሺܒሻ൯ ←   (ሻሻܒሺ۾ሬሬԦܑሺܘ

Constraints (8) and (9) are 
satisfied? 

Does next 
position for 
P exist? 

? 

No 

Yes 
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No 

Generated Q and set j=1  
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Fitness evaluation Update gbest and pbest୧ 
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END 
No 

Constraints (8) and (9) are 
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Does next 
position for 
P exist? 

 

No 
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No 
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j ← j ൅ 1 

j ← j ൅ 1 
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i ← i ൅ 1 
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No 
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less than 5400 seconds (1.5 hour), it is 
categorized as small to medium-sized problems; 
otherwise, it is categorized as large-sized 
problems. This procedure is similar to that of 
Safaei et al. [39].  

4-1. Parameters tuning 
Since the efficiency of the metaheurstics 
algorithms depends strongly on the operators and 
the parameters, design of experiments is done to 
set parameters. Design of experiments finds the 
combination of control factors that has the lowest 
variation, which aims for robustness in solutions. 
To cover different sizes, instances with small size 
(8×11), medium size (9×18), and large size 
(16×30) have been selected. The MPSO and GA 
parameters are set using a full factorial design 
and Taguchi technique design, respectively. 

4-1-1. Parameter setting for the proposed 
MPSO 
In this section, parameters of the MPSO are 
selected using the full factorial design. In this 
study, a full factorial design has been used to 
determine the best combination of these 
parameters. The resulting experiment has been 
analyzed by means of a multifactor analysis of 
variance (ANOVA) technique. The interactions 
of the factors are neglected, because their F ratios 
were small. The response variable for this 
experiment is the linearization objective function. 
The experiments are performed for three 
categories of small, medium, and large instances. 
Tables 1, 2, and, 3 present the parameters and 
their candidate values (levels) for small size, 
medium size, and large size, respectively. Tables 
4, 5, and 6 present experimental design ANOVA 
for small size, medium size, and large size, 
respectively. In ANOVA table, for each factor or 
interaction, DF represents the degrees of 
freedom, SS is the sum of squares, MS is the 
mean squares, F represents the F-ratio, and 
finally P represents the p-value. The MPSO 
parameters are obtained using the main-effects of 
plot of the presented levels (see figures 6-8). A 
summary of the two proposed MPSO parameters 
is given in Table 7. 
 

Tab. 1. Experimental factors and their 
levels for small size 

Parameters Levels Values 

population 9 
{100, 150, 200, 250, 300, 

350, 400, 450, 500} 

Iteration 11 
{35, 40, 45, 50, 55, 60, 65, 

70, 75, 80, 85} 

 

Tab. 2. Experimental factors and their 
levels for medium size 

Parameters Levels Values 

population 11 
{500, 600, 700, 800, 900, 

1000, 1100, 1200, 
1300,1400,1500}

Iteration 10 
{30, 40, 50, 60, 70, 80, 

90, 100, 110, 120} 
 

Tab. 3. Experimental factors and their 
levels for large size 

Parameters Levels Values 

population 10 
{4600, 4700, 4800, 4900, 
5000, 5100, 5200, 5300, 

5400, 5500} 
Iteration 7 {30, 40, 50, 60, 70, 80, 90}

 
Tab. 4. ANOVA table for MPSO for small 

size instance 
Source DF SS MS F P 

population 8 26.4714 3.3089 6.42 0.000 
iteration 10 6.8350 0.6835 1.33 0.218 

Population 
*iteration 

80 34.8620 0.4358 0.85 0.803 

Error 198 102.0000 0.5152   
Total 296 170.1684  

 
Tab. 5. ANOVA table for MPSO for 

medium size instance 
Source DF SS MS F P 

population 10 20.5576 2.0558 3.04 0.001 
iteration 9 10.7303 1.1923 1.76 0.076 

Population 
*iteration 

90 64.1697 0.7130 1.06 0.371 

Error 220 
148.666

7
0.6758   

Total 329 
244.124

2 
   

 
Tab. 6. ANOVA table for MPSO for large 

size instance 
Source DF SS MS F P 

population 9 9.314 1.035 0.88 0.548
iteration 6 13.200 2.200 1.86 0.091 

Population 
*iteration

54 66.419 1.230 1.04 0.416 

Error 140 165.333 1.181   
Total 209 254.267    

 
Tab. 7. The obtained value of MPSO 

parameters 

16×30 9×18 8×11 
Size 

Parameter 

5400 1000 400 population 
90 110 65 Iteration 
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Fig. 6. Main-effects plot for small size 
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Fig. 7. Main-effects plot for medium size 
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Fig. 8. Main-effects plot for large size 

 
4-1-2. Parameter setting for the proposed GA  
Due to the large number of parameters in the 
proposed GA algorithm, finding the best 
combination of parameter levels which improves 
the performance and robustness of the proposed 
algorithm is important. The best and, of course, 

the most exhaustive and time-consuming 
approach is full-factorial. However, in most 
cases, like this case, this approach is inefficient 
due to the large number of factors and their 
respective levels. In the Taguchi method, 
orthogonal arrays are used to consider a large 
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number of decision variables with a small 
number of experiments. In comparison to the full 
factorial methods, the Taguchi method is more 
efficient, especially in large-scale cases. Five 
parameters (factors) are considered for the 
proposed GA. From the Taguchi standard table of 
orthogonal arrays, the orthogonal array L16 is 
selected as the fittest orthogonal array design 
which fulfills the experimental design. The 
experiments are performed for three categories of 

small, medium, and large instances. Tables 8, 9, 
and 10 present the parameters and their candidate 
values (levels) for small size, medium size, and 
large size, respectively. After obtaining the 
results of the Taguchi experiment, the SN ratio 
for each experiment is calculated. Figures 9, 10, 
and 11 show the mean SN ratio obtained at each 
level for the proposed GA. A summary of five 
proposed GA parameters is given in Table 11.

 

Tab. 8. Experimental factors and their levels for small size 
Parameters Levels Values 
population 4 {350, 400, 450, 500} 
Iteration 4 {55, 60, 65, 70} 

Probability of crossover 4 {0.5, 0.6, 0.7, 0.8} 
Probability of mutation 4 {0.3, 0.4, 0.5, 0.6} 

Number of members competing in the tournament 2 {2, 3} 
 

Tab. 9. Experimental factors and their levels for medium size 
Parameters Levels Values 
population 4 {1000, 1100, 1200, 1300} 
Iteration 4 {100, 110, 120, 130} 

Probability of crossover 4 {0.8, 0.7, 0.6, 0.5} 
Probability of mutation 4 {0.3, 0.4, 0.5, 0.6} 

Number of members competing in the tournament 2 {2, 3} 
 

Tab. 10. Experimental factors and their levels for large size 
Parameters Levels Values 
population 4 {5300, 5400, 5500, 5600} 
Iteration 4 {80, 90, 100,110} 

Probability of crossover 4 {0.5, 0.6, 0.7, 0.8} 
Probability of mutation 4 {0.3, 0.4, 0.5, 0.6} 

Number of members competing in the tournament 2 {2, 3} 
 

Tab. 11. The obtained value of GA parameters 

16×30 9×18 8×11 
Size 

parameter 
5500 1100350Population
100 110 60 Iteration 
0.7 0.7 0.8 Probability of crossover 
0.4 0.60.3Probability of mutation
3 2 3 Number of members competing in the tournament 
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According to the Lingo software’s results, 	Fୠୣୱ୲ 
shows the best feasible objective function value 
(OFV) which has been found so far.	Fୠ୭୳୬ୢ 
indicates the bound on the objective function 
value. Thus, a possible domain for the optimum 
value of objective function (F∗) is limited 
between		Fୠୣୱ୲ ൒ F∗ ൒ Fୠ୭୳୬ୢ. Table 12 and 
Table 13, indicate the comparison of the Lingo 
software’s B&B algorithm results with MPSO 
and GA corresponding to 19 test problems for 
states ignoring reliability and considering 
reliability, respectively. Each problem is ran 10 
times and the average of OFV (Zୟ୴ୣ), best OFV 
(Zୠୣୱ୲), and also average of run time (T୑୔ୗ୓) are 
represented in these two tables. The relative gap 
between the best OFV found by Lingo (Fୠୣୱ୲) 
and Zୟ୴ୣ that is found by metaheuristic 
algorithms are shown in column ‘‘Gୟ୴ୣ’’. The 
Gୟ୴ୣ is calculated as: Gୟ୴ୣ ൌ ሾሺZୟ୴ୣ െ Fୠୣୱ୲ሻ/
Fୠୣୱ୲ሿ ൈ 100. Also, the relative gap between 
Fୠୣୱ୲ and Zୠୣୱ୲ is shown in column ‘‘Gୠୣୱ୲’’. In a 

similar manner, the Gୠୣୱ୲ is calculated as: 
Gୠୣୱ୲ ൌ ሾሺZୠୣୱ୲ െ Fୠୣୱ୲ሻ/Fୠୣୱ୲ሿ ൈ 100. In Lingo 
software’s B&B algorithm, if	Fୠ୭୳୬ୢ ൌ 	Fୠୣୱ୲, 
the optimal solution is achieved. In tables, in 
some cases, Zୟ୴ୣ and Zୠୣୱ୲ are between	Fୠ୭୳୬ୢ 
and 	Fୠୣୱ୲ that shows a feasible better solution; 
under this condition, Gୟ୴ୣ and Gୠୣୱ୲ are negative. 
But, in cases that Zୟ୴ୣ and Zୠୣୱ୲ are out of the 
domain of ሾ	Fୠୣୱ୲, Fୠ୭୳୬ୢሿ; Gୟ୴ୣ and Gୠୣୱ୲ will be 
positive numbers. For comparing MPSO and GA, 
some columns are defined as: Ga-ave, Ga-best, 
and R that are formulated as follows: Gaୟ୴ୣ ൌ
൫Zୟ୴ୣ୑୔ୗ୓ െ Zୟ୴ୣୋ୅ ൯/Zୟ୴ୣ୑୔ୗ୓ , Gaୠୣୱ୲ ൌ ൫Zୠୣୱ୲

୑୔ୗ୓ െ
Zୠୣୱ୲
ୋ୅ ൯/Zୠୣୱ୲

୑୔ୗ୓, and R ൌ ሺT୑୔ୗ୓ െ Tୋ୅ሻ/Tୋ୅ , 
respectively.  
As mentioned above in small to medium sizes 
examples, a limited run time (1.5 h) is considered 
for Lingo solver to find optimal solutions. 
Therefore, as it can be concluded from Table 12 
and Table 13, the percent error of optimal 
solution is very low when different problems are 
selected. Also, in large-sized examples, MPSO 
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and GA perform better than the Lingo software’s 
B&B algorithm in some problems in limited time. 
It implies that MPSO and GA algorithms are so 
effective to solve the proposed model in all 
classes of problems. In large-sized problems, 
metaheuristic algorithms, which have been used, 
generate better solutions from lingo software’s 
B&B algorithm or solve problems with negligible 
error. It is obvious that the solving time for 
metaheuristic algorithms with increasing the size 
of the problem is much less than Lingo 
software’s B&B algorithm. Paired t test was 
conducted to analyze significant difference 
between the obtained solutions of the algorithms 
in the two states ignoring reliability and 
considering reliability, respectively. The 
statistical details are shown in Tables 14 and 15. 
Tests show that there is a statistical significant 
difference between solutions obtained by MPSO 
and GA in both states. By regarding both tables, 
it can be gathered that the obtained solutions by 
GA are apparently better than MPSO in both 
states ignoring reliability and considering 
reliability. 
For comparison of effect of machine failure given 
in the Tab. 16, the best solutions obtained from 
three algorithms have been used in both states 
ignoring reliability and considering reliability. 
The reliability consideration makes smaller 
solution space, so the value of the objective 
function has been deteriorated. Because the 
objective function of this model is minimized, 
row of the reduction percent in the Tab. 16. 
have has values negative. Optimal solutions of 
example 7 have been given for evaluated effect of 
reliability in two states ignoring reliability and 
considering reliability (see Fig. 13 and Fig. 12). 
The service capacity of machines decreases in 
state considering reliability (multiply term 

൬
୑୘୆୊ౠ

୑୘୘ୖౠା୑୘୆୊ౠ
൰ ൏ 1 by term μ୨). Thus, the 

number of parts, which their operations are 
outsourced, would increase. The results of 
solving numerical examples show that the 
reliability consideration has significant impacts 
on the final block diagonal form of machine-part 
matrices. 
 

5. Conclusions 
In this paper, a conceptual framework and a 
mathematical model were proposed as a queue 
system. Machine as server and part as customer 
were considered. The inter-arrival time between 
two consecutive customers had exponential 
distribution, and service time had been 
distributed generally. The objective function of 
model minimized inter-cell movements until it 

formed optimal cells. Machines are key elements 
in manufacturing systems and their breakdowns 
can badly affect system performance measures. 
The results show that although the reliability 
consideration has significant impacts on the final 
block diagonal form of machine-part matrices, it 
can reduce the value of production rate. As the 
CF problem is NP-hard, by increasing the size of 
the problem, Lingo stops solving it; due to the 
increase of computational time, the B&B 
algorithm is unable to give good solutions. 
Therefore, it is necessary to present a 
metaheuristic approach to solve this model for 
large-scale problems. Two metaheuristic 
algorithms based on genetic and MPSO 
algorithms were developed to solve problems. 
Finally, solutions generated by MPSO, GA, and 
Lingo software’s B & B were compared with 
each other by considering solving times. This 
comparison showed the high efficiency of the 
proposed metaheuristic algorithms for large-sized 
problems versus Lingo software’s B&B. 
Solutions generated by GA are apparently better 
than MPSO algorithm solutions. The following 
scopes can be interesting fields for future 
research: 
 Development of the model considering facility 

layout  
 Considering costs in the framework of this 

study  
 Development of the model considering 

dynamic state 
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Tab. 12. Comparison B&B, MPSO, and GA runs for state ignoring machine reliability 
B&B  MP O GA MPSO & GA comparison(%) 

Problem 
No. 

No. of 
parts 

No. of 
machines 

No. of 
cells 

Mmax Fbest Fbound 
TB&B 

(s) 
Zave Zbest 

TMPSO 
(s) 

Gave 
(%) 

Gbest 
(%) 

Zave Zbest 
TGA 
(s) 

Gave 
(%) 

Gbest 
(%) 

Ga-ave Ga-best R 

1 4 4 2 3 2 2 0 2 2 0 0.00 0.00 2 2 1 0.00 0.00 0.00 0.00 -100 
2 5 5 2 3 0 0 0 0 0 0 0.00 0.00 0 0 1 0.00 0.00 - - -100 
3 7 6 2 3 1 1 1 1 1 2 0.00 0.00 1 1 1 0.00 0.00 0.00 0.00 100 
4 8 6 2 4 7 7 1 8 8 0.9 14.29 14.29 8 8 1 14.29 14.29 0.00 0.00 -10.00 
5 9 7 3 4 6 6 1 6.6 6 1 10.00 0.00 6 6 1 0.00 0.00 9.09 0.00 0.00 
6 11 8 3 4 10 10 14 10.4 10 1 4.00 0.00 10.3 10 1 3.00 0.00 0.96 0.00 0.00 
7 12 9 3 4 16 16 60 17.5 17 6.1 9.38 6.25 17 17 12.5 6.25 6.25 2.86 0.00 -51.20 
8 18 8 3 5 19 19 115 20.3 19 4.9 6.84 0.00 19.4 19 13 2.11 0.00 4.43 0.00 -62.31 
9 17 10 3 5 20 20 204 21.7 21 5.8 8.50 5.00 21 21 13.6 5.00 5.00 3.23 0.00 -57.35 

10 18 9 3 5 22 22 1531 23.1 22 5.3 5.00 0.00 22.2 22 13.1 0.91 0.00 3.90 0.00 -59.54 
11 19 9 3 5 28 28 251 30.9 30 8 10.36 7.14 30.1 30 12.7 7.50 7.14 2.59 0.00 -37.01 
12 20 9 3 5 27 27 1303 28.8 28 7 6.67 3.70 27.9 27 12.8 3.33 0.00 3.13 3.57 -45.31 
13 19 10 3 5 34 34 772 36.2 35 11 6.47 2.94 35.8 34 12.8 5.29 0.00 1.10 2.86 -14.06 
14 24 11 4 5 31 28 5400 34.2 32 34.1 10.32 3.23 32.9 32 264.8 6.13 3.23 3.80 0.00 -87.12 
15 24 14 4 5 22 19 5400 24.5 23 34.6 11.36 4.55 23 22 279 4.55 0.00 6.12 4.35 -87.60 
16 30 16 4 5 68 56 5400 70 68 58.6 2.94 0.00 69 68 267.6 1.47 0.00 1.43 0.00 -78.10 
17 35 20 4 7 79 63 5400 78.5 75 62.1 -0.63 -5.06 77.9 75 290.9 -1.39 -5.06 0.76 0.00 -78.65 
18 37 20 5 7 108 87 5400 106.3 104 61.2 -1.57 -3.70 106.3 105 308.3 -1.57 -2.78 0.00 -0.96 -80.15 
19 43 22 5 7 72 57 5400 74.5 72 64.4 3.47 0.00 73.4 72 342.6 1.94 0.00 1.48 0.00 -81.20 

average 5.65 2.02 3.09 1.48 2.49 0.55 -48.93 

 
Tab. 13. Comparison B&B, MPSO, and GA runs for state considering machine reliability 

B&B MPSO GA MPSO & GA comparison(%) 
Problem 

No. 
No. of 
parts 

No. of 
machines 

No. of 
cells 

Mmax Fbest Fbound 
TB&B(s

) 
Zave Zbest TMPSO(s) 

Gave(%
) 

Gbest(%) Zave Zbest TGA(s) 
Gave(%

) 
Gbest(%) Ga-ave Ga-best R 

1 4 4 2 3 2 2 0 2 2 0 0.00 0.00 2 2 1 0.00 0.00 0.00 0.00 -100 
2 5 5 2 3 1 1 0 1 1 0 0.00 0.00 1 1 1 0.00 0.00 0.00 0.00 -100 
3 7 6 2 3 1 1 0 1 1 2 0.00 0.00 1 1 1 0.00 0.00 0.00 0.00 100.00 
4 8 6 2 4 8 8 1 8 8 1 0.00 0.00 8 8 1 0.00 0.00 0.00 0.00 0.00 
5 9 7 3 4 7 7 3 7.8 7 1 11.43 0.00 7 7 1 0.00 0.00 10.26 0.00 0.00 
6 11 8 3 4 10 10 7 10.8 10 1 8.00 0.00 10 10 1 0.00 0.00 7.41 0.00 0.00 
7 12 9 3 4 17 17 35 18 17 1 5.88 0.00 17 17 12.5 0.00 0.00 5.56 0.00 -92.00 
8 18 8 3 5 20 20 111 21.5 21 5.6 7.50 5.00 20.4 20 12.9 2.00 0.00 5.12 4.76 -56.59 
9 17 10 3 5 21 21 63 23.4 23 1.2 11.43 9.52 23 23 13.1 9.52 9.52 1.71 0.00 -90.84 

10 18 9 3 5 23 23 551 24.5 23 6.5 6.52 0.00 23.1 23 12.9 0.43 0.00 5.71 0.00 -49.61 
11 19 9 3 5 31 31 128 31.3 31 8.4 0.97 0.00 31 31 12.7 0.00 0.00 0.96 0.00 -33.86 
12 20 9 3 5 28 28 415 29.6 29 8 5.71 3.57 28.3 28 12.9 1.07 0.00 4.39 3.45 -37.98 
13 19 10 3 5 36 36 1952 37.4 36 10.1 3.89 0.00 37 36 13.1 2.78 0.00 1.07 0.00 -22.90 
14 24 11 4 5 33 31 5400 35.8 34 36.3 8.48 3.03 34.4 33 259.6 4.24 0.00 3.91 2.94 -86.02 
15 24 14 4 5 25 19.23 5400 26.5 25 37.4 6.00 0.00 25.2 25 277.9 0.80 0.00 4.91 0.00 -86.54 
16 30 16 4 5 73 59.59 5400 71.5 68 58.2 -2.05 -6.85 70.9 69 269.6 -2.88 -5.48 0.84 -1.47 -78.41 
17 35 20 4 7 79 69 5400 79.9 77 68.8 1.14 -2.53 79.7 77 290.3 0.89 -2.53 0.25 0.00 -76.30 
18 37 20 5 7 110 91.03 5400 107.3 104 64.4 -2.45 -5.45 108 106 308.1 -1.82 -3.64 -0.65 -1.92 -79.10 
19 43 22 5 7 74 63 5400 75.7 74 65.2 2.30 0.00 75.4 74 335.4 1.89 0.00 0.40 0.00 -80.56 

average 3.93 0.33 1.00 -0.11 2.73 0.41 -51.09 
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Tab. 14. Detailed statistics of paired t test for state ignoring machine reliability 

 
Paired Differences t df 

Sig. (2-
tailed) 

 
Mean 

Std. 
Deviation 

Std. Error 
Mean 

95% Confidence Interval of the 
Difference    

Lower Upper 
Pair1 

MPSO-GA 
.59474 .47897 .10988 .36388 .82559 5.412 18 .000 

 
Tab. 15. Detailed statistics of paired t test for state considering machine reliability 

 
Paired Differences t df 

Sig. (2-
tailed) 

 
Mean 

Std. 
Deviation 

Std. Error 
Mean 

95% Confidence Interval of the 
Difference    

Lower Upper 
Pair1 

MPSO-GA 
.55789 .59002 .13536 .27351 .84228 4.122 18 .001 

 
Tab. 16. comparison of effect of machine failure for two states ignoring reliability and 

considering reliability 
Problem 
number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

ignoring 
machine 
reliability 

2 0 1 7 6 10 16 19 20 22 28 27 34 31 22 68 75 104 72 

considering 
machine 
reliability 

2 1 1 8 7 10 17 20 21 23 31 28 36 33 25 68 77 104 74 

Reduction 
percent 

0.00 - 0.00 -14.29 -16.67 0.00 -6.25 -5.26 -5.00 -4.55 -10.71 -3.70 -5.88 -6.45 -13.64 0.00 -2.67 0.00 -2.78 

 
7 8 9 1 2 3 10 4 5 6 11 12 

1 1 0 1 0 1 0 1 0 0 0 0 0 
3 1 1 1 0 0 0 0 0 1 0 0 0
6 1 1 1 1 1 1 1 0 1 0 0 0 
7 0 1 1 1 0 0 1 0 0 0 0 0 
4 0 0 1 0 0 1 1 0 0 0 0 1 
2 0 0 0 0 0 0 0 1 0 1 0 1 
5 1 0 0 0 0 0 0 0 1 0 1 0 
8 1 1 0 1 0 0 0 0 1 0 1 0 
9 0 0 0 1 0 0 0 1 0 1 0 1 

Fig. 12. Optimal solution of example 7 for state considering machine reliability 
 

1 11 3 4 5 6 7 8 12 2 9 10 
8 1 1 0 0 1 0 1 1 0 0 0 0 
2 0 0 0 1 0 1 0 0 1 0 0 0 
3 0 0 0 0 1 0 1 1 0 0 1 0 
5 0 1 0 0 1 0 1 0 0 0 0 0 
9 1 0 0 1 0 1 0 0 1 0 0 0 
1 0 0 0 0 0 0 1 0 0 1 1 1 
4 0 0 1 0 0 0 0 0 1 0 1 1 
6 1 0 1 0 1 0 1 1 0 1 1 1 
7 1 0 0 0 0 0 0 1 0 0 1 1 

Fig. 13. Optimal solution of example 7 for state ignoring machine reliability 
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