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In this paper, a stochastic cell formation problem is studied
considering the queuing theory and the reliability concept. A novel
probabilistic mathematical model is presented considering inter-
arrival times, processing times, and machines’ breakdown. Since
the cell formation problem is NP-Hard, two algorithms are
developed based on genetic and modified particle swarm
optimization (MPSO) algorithms. Since the structure of the
problem contains multiple irregularities, a new heuristic method is
developed, which produces effective feasible solutions on demand.
A deterministic branch and bound (B&B) algorithm is used to
evaluate the results of modified particle swarm optimization
algorithm and the genetic algorithm. The results indicate that
proposed algorithms have better performance than the B&B
algorithm of Lingo software according to the mixed effect of
solution quality and computational times. The solution of two
metaheurstic algorithms is compared by the t-test method.
Ultimately, the results of numerical examples indicate that
considering reliability has significant effect on the block structures
of machine-part.
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1. Introduction

classifies parts with closest features and
processes into the part families and assigns

The concept of group technology (GT) has
emerged to reduce setups, batch sizes, and travel
distances. In essence, GT tries to retain the
flexibility of a job shop with the high
productivity of a flow shop. Cellular
manufacturing (CM) concept is based on GT and
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machines into the cells. Machinery and machine
tools, agricultural and construction equipment,
hospital and medical equipment, defense
products, automobiles and engines, piece parts
and components, electronic products, chemical
equipment, and packaging industries are some
domains of CM application in the industry [1].
The design of CM involves four important stages:
cell formation (CF), group Ilayout, group
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scheduling, and resource allocation. CF groups
machines and parts into manufacturing cells.
Studies  considering uncertainty can be
categorized into three approaches: stochastic
programming approach, fuzzy programming
approach, and robust optimization approach. In
this article, stochastic programming approach for
CF problem is presented. The inter-arrival time
between two consecutive customers and service
time are considered stochastic. In literature
review carried out for CM with stochastic
programming approach, the demand, the
processing time, the reliability, and the mix
product had been considered stochastic, which
the following studies taken in these contexts are
presented, respectively.

Harhalakis et al. [2] assumed the product demand
as a random variable, in CF problem. They
sought out the minimization of expected inter-cell
material handling cost in their model. Asgharpour
and Javadian [3] considered three normal,
binomial, and beta distributions for demand and
minimized the total sum of the machine purchase
cost, the operating cost, the inter-cell and intra-
cell material handling costs, the machine
relocation cost, and the absolute sum of the
demand deviation from mean for part types over
the planning horizon. CAO and Chen [4] offered
the CF with supposed scenarios for products
demand. In this model, an occurrence probability
had been assigned to each scenario. Objective
function of this model minimized machine cost
and expected inter-cell material handling cost.
Tavakkoli-Moghaddam et al. [5] examined a
mathematical model to solve a facility layout
problem in CM systems with stochastic demands.
The main purpose of their study is to minimize
the total costs of inter- and intra-cell movements
in both machine and cell layout problems in CM
system simultaneously. They considered part
demands as an independent variable with the
normal probability distribution. Egilmez and Suer
[6] proposed a two-phase hierarchical
methodology to find the optimal manpower
assignment and cell loads simultaneously. In the
first phase, the manufacture cells are formed with
objective function of the production rate
maximization. Then, manpower with objective
function of the number of labors minimization
has been assigned to the manufacture cells. In
both models, the processing time and demand
have a normal distribution. Ariafar et al. [7]
purposed the model for layout cells in the shop
and machines in the machine cells. Demand has
been considered as stochastic and with the
uniform distribution. This model minimizes the

inter-cell and intra-cell material handling costs.
Egilmez et al. [8] viewed uncertainty of
processing times and customer demand with a
normal distribution. The objective is to design a
CM system with product families that are formed
with most similar products and minimum number
of cells and machines for a specified risk level.
Ariafar et al. [9] examined the effect of demand
fluctuation on cell layout in shop and machine
layout in cell. This model minimizes the inter-cell
and intra-cell material handling costs. They
assumed which demand has a normal
distribution. Rabbani et al. [10] proposed a bi-
objective CF problem with demand of products
expressed in a number of probabilistic scenarios.
Their model in the first objective minimizes the
sum of machine constant cost, expected machine
variable cost, cell fixed-charge cost, and expected
intercell movement cost; in the second objective,
it minimizes expected total cell loading variation.
Egilmez and Suer [11] offered two models for
analyzing the interaction between CF stage and
cell scheduling stage in terms of the risk taken by
decision-makers. The first model formed
manufacturing cells with the objective of
maximizing the total pair-wise similarity among
products assigned to cells and minimizing the
total number of cells. The second model
maximizes the number of early jobs. The demand
and the processing time in both models are
random variables with a normal distribution.

A review of studies done in the processing time
area is provided in the following. Saidi-Mehrabad
and Ghezavati [12] assumed the processing time
and the time between two successive arrivals to
cell described by exponential distribution in CF
problem. For analyzing this problem, they used
queuing theory in which the server is the machine
and the customer is the part. The aim of this
model is to minimize the summation of three
costs: (1) the idleness costs for machines; (2) the
total cost of sub-contracting for exceptional
elements (exceptional elements are defined as
parts which must be processed in different cells
and therefore they have intercellular movements);
(3) the cost of resource underutilization.
Ghezavati and Saidi-Mehrabad [13] proposed a
mathematical model for CM problem integrated
with group scheduling in an uncertain space.
Within this model, CF and scheduling decisions
are optimized concurrently. It is assumed that the
processing time of parts on machines is stochastic
and described by discrete scenarios. Their model
minimizes total expected cost including
maximum tardiness cost among all parts, cost of
subcontracting for exceptional elements and the
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cost of resource underutilization. Egilmez and
Suer [14] presented a mathematical model for CF
which minimized the number of tardy jobs and
total probability of tardiness. They assumed that
the processing time of each job, has a normal
distribution. Ghezavati and Saidi-Mehrabad [15]
assumed that each machine works as a server and
each part is a customer where servers should
provide service customers. Accordingly, they
defined formed cells as a queue system which can
be optimized by queuing theory. The optimal
cells and part families were formed by
maximizing the probability that a server is busy.
Ghezavati [16] evaluated CF  problem,
scheduling, and layout decisions, concurrently.
Also, he considered processing time as stochastic
with discrete scenarios under supply chain
characteristics. This model minimized holding
cost and the costs regarded associated with the
suppliers’ network in a supply chain in order to
outsource exceptional operations. Fardis et al.
[17] examined CF problem while considering
stochastic parameters, the arrival rate of parts into
cells, and machine service rate which have been
described by exponential distribution. The
objective function of the presented model
minimized summation of machines’ cost of
idleness, sub-contracting cost for exceptional
parts, non-utilizing machine cost, and holding
cost of parts in the cells.

However, the reliability of machine can impact
on the processing time. But, due to the numerous
of articles in this issue, they were presented
separately. Das et al. [18] presented a multi-
objective mixed integer-programming model
which interval between failures is distributed
exponentially. In the first objective, it minimized
the variable cost of machining operations, the
inter-cell material handling costs, and the penalty
cost of machine non-utilization; in the second
objective, it maximized system reliability with
minimizing failure rate. Das et al. [19] proposed a
preventive maintenance planning model for the
performance improvement of CM systems in
terms of machine reliability and resource
utilization. Considering machine failure times
following a Weibull distribution, the presented
model in their study determines a preventive
maintenance interval and a schedule for
performing preventive maintenance actions on
each machine in the cell by minimizing the total
maintenance cost and the overall probability of
machine failures. Das et al. [20] investigated a
new approach for the design of CM system by
considering machine reliability within a multi-
objective optimization framework which seeks to

strike a balance between the costs and reliability
goals. The CM system design problem consists of
assigning the machines to cells, and selecting for
each part type, the process route with the highest
overall system reliability for each part type while
minimizing the total costs of manufacturing
operations, machine under-utilization, and inter-
cell material handling. It has assumed that
machine  failure and repair times are
exponentially distributed. In another model,
based on Weibull distribution and exponential
distribution approach, as Das [21] suggested,
designer/user selects the suitable failure rate for a
specific situation. In this article, when system
reliability expectation is high, the Weibull
distribution may be viewed to generate better cell
configuration. Jabal Ameli et al. [22] investigated
the effects of machine breakdowns in the CF
problem with a new perspective. The results of
their study showed that although considering
machine reliability can increase the movement
costs, it significantly reduces the total costs and
total time for the CM system. Jabal Ameli and
Arkat [23] conducted a study on the
configuration of machine cells considering
production volumes and process sequences of
parts. Further, they studied on alternative process
routings for part types and machine reliability
considerations. They found out that the reliability
consideration has significant impacts on the final
block diagonal form of machine-part matrices.
Chung et al. [24] found that machine reliability
has meaningful effects on reducing the total
system cost in CF problem. Rafiee e al. [25]
proposed the integrated approach to analyze the
CM system better, since different aspects of the
manufacturing system are interrelated. Weibull
distribution is assigned to machine failure time
distribution; to conquer the breakdowns,
preventive and corrective actions  were
considered. Arkat et al. [26] presented CF
problem in general state while considering the
reliability. The generalized CF problem follows
the selection of the best process plan for each part
and assigning of machines to the cells. In this
model, it is assumed that the number of
breakdowns for each machine follows a Poisson
distribution with a known failure rate. Because of
the probabilistic nature of the machine
breakdowns, a set of chance constraints have
been introduced. These constraints guarantee that
the number of breakdowns for each machine
never exceeds a predefined percentile. The
objective function of this model minimized
Intercellular and intracellular movement costs
and machine breakdown costs.
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Every factory looks for the best mix products as
they are a set of part types in a factory, which can
be produced. The value of demand for each
product in the mix product is not known exactly at
the time of designing the manufacturing cells due
to customized products, shorter product life-
cycles, and unpredictable patterns of demand. The
composition of the product mix is determined by
demand and is probabilistic in nature. For this
reason, in studies done in this area, in the design
phase, probability of occurrence is attributed to
each possible mix product. Seifoddini [27]
proposed a stochastic CF model in which a
probability has been attributed to each mix
product. He calculated the expected intercellular
material handling cost for each machine cell
arrangement under all the possible product mixes.
Madhusudanan Pillai and Chandrasekharan [28]
evaluated manufacturing CF under probabilistic
product mix. Each product mix is specified with a
scenario to which probability of occurrence has
been attributed. They minimized inter-cell material
handling. Jayakumar and Raju [29] presented a
mathematic model for CF problem in which
probability of occurrence has been attributed to
each scenario. The objective function of this
model is to minimize the total of the machine
constant (investment) cost, the operating cost, the
inter-cell material handling cost, and the intra-cell
material handling cost for a particular product mix.
The literature review shows that the stochastic
processing time, the stochastic time between two
successive arrivals to cell, and the reliability have
not been studied, simultaneously. As is known,
the demand, the machine availability, and the
processing time are uncertain in real world and
are changed randomly during the time horizon. In
this paper, these stochastic parameters are
investigated, simultaneously. The remainder of
this paper is organized as follows. The problem
formulation is described in Section 2. Modified
particle swarm optimization (MPSO) algorithm
and genetic algorithm (GA) are described in
Sections 3. The computational results and
conclusion are reported in Sections 4 and 5,
respectively.

2. Problem Formulation
The presented mathematical model is a developed
model of deterministic mathematical model.
Deterministic state of this model has been studied
by several researchers (Boctor [30], Duran et al.
[31], and Sayadi et al. [32]). In this section, a new
mathematical model with stochastic in which the
processing time, the time of arrival parts into the
cells, and the machine availability are presented.

The assumptions of the proposed model are as

follows:

e The inter-arrival time between two
consecutive parts is described by exponential
distribution with the rate A; for each part.

e Processing time for parts follows a general
distribution with the rate y; for each machine.

e Fach machine or server works as M/G/1
queuing system.

e The service discipline is based on first-come,
first-serve.

e The breakdown time for each machine follows
a general distribution with known mean time
to repair and known mean time between
failures.

e Capacity of cells for locating machines is
known.

e Exceptional elements will be out-sourced to
operate.

To formulate the problem, a queuing model is

used. In queuing model, the parts are considered

as customer and machines as servers. An M/G/1

model is used in this queuing model. The M/G/1

queue is a queue model where arrivals are

Markovian (modulated by a Poisson process);

service times have a General distribution and

there is a single server. In the M/G/1 model,
when those entities that are lost are included, the
output stream is Poisson. This assumption is
supported by several empirical results, to which it
has been pointed in the article presented by the

Cruz et al. [33]. Because in the presented model,

the arrival rate for each queuing system is less

than service rate, thus the arrival rate is equal to
the output rate and the time of arrival or output
parts are exponentially distributed. The queuing

system is shown in Fig. 1.

Cuene
A

1

r
I I I I O

Part Machine

Fig. 1. Queuing system for the proposed model

2-1. Notation

Indexing sets

i: index for partsi = 1,...,P

j: index for machines j = 1,...,M

k: index forcellsk = 1,...,C

Parameters

Ai: mean arrival rate for part i (mean number of
parts entered per unit time).
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Wj: mean service rate for machine j (mean number
of customers served per unit time by machine j).
Mpax: The maximum number of machines per
cell.

MTBF;j: Mean time between failures for machine
j

MTTR; : Mean time to repair for machine j

ay = {1 if partiis to be processed on machine j

0 otherwise.
Decision variables

1  if partiis assigned to cell k
Xik = { .

0 otherwise

_ (1 if machine j is assigned to cell k

Yik = { .

0 otherwise

2-2. Mathematical model

Approach presented by the Ameli et al. [22] was
used for considering the reliability. For
investigation of the effect of the reliability on the
CF problem, two definitions are presented. The
number of machine breakdowns, N (t), can be
acquired by dividing the production time by the
MTBEF.

t
NO® = 355 (1)
By multiplying the MTTR by the number of
breakdowns calculated in Eq. (1), the total repair
time, T (t), can be obtained as follows:

() = t X MTTR 2)

MTBF
In order to obtain the total time for a machine, the
repair time for the machine is added to its
production time.

mean of total time for machine j
Ej(© X MTTR; ©
~ MTBF, "
MTTR; N 1
" XMTBF, ®)
mean of total time for machine j
1 (MTTR]- - MTBF,-)

n MTBF,

Where E;(t) is the production time expectation

for machine j. Finally, production rate can be
obtained considering the reliability as follows:

the production rate for machine j

- <ﬂ> (4)

MTTR; + MTBF,

As might be expected, the value of production
rate is reduced by considering the reliability. As

mentioned in the above contents, the reliability
has affects only on the production rate.

According to the queuing model and the Fig. 1,
the part arrival time for processing on a particular
machine is equivalent to the most minimization
of the part arrival time for processing. Because
the inter-arrival time between two consecutive
customers has exponential distribution, then the
most minimization of the part arrival time for
processing has exponential distribution with
parameter Ao (effective arrival rate) (Frederick
and Hilller [34]). A can be computed as
follows:

n
Aefr = Z A
=1

Where 2; is arrival rate for part i, and n is the
number of parts that is processed on the same
machine. Based on the presented description, the
proposed model can be formulated as follows:

Minz = Z

k=1j

P
z ayxi(1 = yix) (%)

i=1

Mz

1l
g

C

s.t: Xpe =1 Vi 6
C kz " (6)

z Vk=1 Vj (7
M

D Vi S My VK ®)

j=1

< MTBF, ,
Z Z MiXiYjic < by MTTR; + MTBF, vi )

Xik y1k e{0,1} Vvijk (10)

Constraint  (5) minimizes the inter-cell
movements of parts. Constraint (6) guarantees
that each part must be allocated to one cell only.
Constraint (7) guarantees that each machine must
be allocated to one cell only. Constraint (8)
guarantees that the number of machines to be
allocated to any cell should be less than the
maximum number of machines allowed in each
cell. Constraint (9) avoids instability of queuing
system, that is, the effective arrival rate will
necessarily be less than service rate. Constraint
(10) specifies the type of decision variables.

In the proposed mathematical model, the
objective function (5) and constraint (9) are
nonlinear. For linearization, new binary integer
variable Vjj is defined which is computed by the
following equation:

Vijk = Xik X ¥jk vijk o (11)
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For linearization, the objective function (5) and
constraint (9) in the following equations should
be added to the proposed model by enforcing
these two linear inequalities simultaneously:

Vijk — Xjk — ij + 1.5 >0
1'5Vijk — Xjk — yjk <0

vi, (12)
Vi jk (13)

3. The Proposed Algorithms

The CF problem is NP-hard problem (King and
Nakornchai [35]). Therefore, precise solution
procedures and commercial  optimization
software are unable to reach global optimum in
an acceptable amount of time for medium- and
large-sized scale problems. To deal with this
deficiency, two algorithms based on MPSO and
GA metaheuristics have been developed in this
paper.

3-1. The MPSO algorithm

Particle swarm optimization (PSO) algorithm by
Kennedy and Eberhart (Kennedy and Eberhart
[36]; Eberhart and Kennedy [37]) has been
presented for problems which have continuous

solution space. PSO is a nature-based
evolutionary algorithm and starts with an initial
population of random solutions. Each potential
solution is called a particle (X). Particles move
around in a multidimensional search space, and
during movement, each particle adjusts its
position based on its own past and the experience
of neighbor particles. Particle’s fitness is
compared with its pbest; (value of the best
function resultfor particle iso far). If existing
value is better than pbest;, then set pbest; equals
the current value, and p; equals the current
location X; in multidimensional space. for all
particles, value of the best function result so far is
called gbest, and its location is assigned to pg. In
the following, the proposed PSO algorithm is
illustrated.

3-1-1. Particle structure

The particle representation involves two sections:
the first section indicates the cells assigned to
machines; the second section represents the cells
assigned to parts. The particle used for the
proposed model is presented in Fig. 2.

Machinel | Machine2

Machine M Partl Part2 Part P

the cell number 1 2

1 3 2 3

Fig. 2. Sample of particle structure

3-1-2. The proposed generating initial
population

To present a qualified initial population, a
heuristic method that always produces a feasible
solution is proposed. The heuristic method is
presented in Fig. 4. In the first step, machines are
allocated to cells based on capacity of cells; in
the second step, parts are allocated to cells
considering constraint (9) for all machines.

3-1-3. Improvement procedure

In this phase, the linearization objective function
is used as the fitness function of the MPSO
method. The updating process is based on X;, p;,
and ﬁg, and it works as follows. In the original
PSO process, the velocity of each particle is
iteratively adjusted, so that the particle
stochastically oscillates around P; and Pg
locations. In fact, the velocity of a particle must
be understood as an ordered set of
transformations that operates on a solution.
Therefore, in each particle of MPSO algorithm,
(X —P;) and (X; —Pg) indicate the necessary
movements to modify from the location given by
the first term to the location given by the second

term of each expression. The difference between
X; and p; represents the changes that will be
needed to move the particle i from X; to p;. If the
difference between a given element of X; and p;
is not null, it means that the mentioned position is
susceptible to change through operations
described below.

A new vector P is generated to record the
positions, where X; and p; elements are not equal.
The vector Q is defined by the same length with
vector P. Binary elements for vector Q are
randomly generated. In any position of vector Q,
if the element is 0, the change is not performed;
but if the element is 1, the element of the same
position of vector P is selected. This element in
the vector P shows the position of vector p;
which should be copied in X;. Then, the
feasibility of constraints (8) and (9) are evaluated.
The procedure continues, if it is true; otherwise,
the made changes return and the next element of
vector P will be tested, which is specified by
vector Q (see Fig. 3). A similar process is done to

update the new location x'; by Py and to obtain

the new location of X;. Similarly, the feasibility
of constraints (8) and (9) are examined, and
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pbest; (the best value of each particle) and gbest
(the best value of the whole swarm) are
calculated by the fitness function. Finally, a
criterion for stopping algorithm (maximum

]}—>xi—pi=[10—1—1 O]—>{

number of iterations) is examined. This
procedure is repeated for any particle. Flowchart
of the MPSO algorithm is presented in Fig. 5.

P=[13 4]
Q=[101

]}—>x;=[21132]

Fig. 3. An example of how to conduct the first stage MPSO algorithm

3-2. The proposed genetic algorithm

Genetic algorithm has been derived from natural
selection in biology. GA follows some steps to
find better solutions. At first, the initial solution
population is generated randomly or used by a
special heuristic. Then, some members of the
generated populations are selected considering
evaluation function, which is called fitness
function. Members with higher fitness can be
selected by the high probability. So, members
with less fitness are substituted by the better
ones. This procedure is repeated until it reaches a
certain number of iterations (Mahdavi et al. [38]).
GA chromosome structure for this model is like

particle structure for MPSO. The pseudo code of
main steps of the proposed GA are as follows:

1.  Initial population is generated using the
proposed heuristic algorithm (see Fig. 4).

2. The fitness value of a chromosome is
calculated by the linearization of objective
function.

3. Producing a new population is based on the
repetition of the following steps:

3.1. Crossover operator:

3.1.1.Selection of two-parent chromosome in one
population is based on the tournament
selection method. Tournament selection
involves running several "tournaments"
among a few individuals chosen (two or
three) at random from the population. The
winner of each tournament (the one with
the best fitness) is selected for crossover.

3.1.2.Two parents are selected from the selection

population. Then, a number between 1 and
M + P (M is the number of machines, and P
is the number of parts) is selected. A single
crossover point on  both  parent’s
chromosome is selected. All data beyond
that point in either chromosome is swapped
between the two parent chromosomes. The
resulting combinations are the children.
After crossover, the feasibility of
constraints (8) and (9) are evaluated. The
procedure continues if it is true; otherwise,
the made change returns.

3.2. The fraction of the initial population is
selected stochastically, and then mutations
are performed on them. Used mutation
alters one array value in a chromosome
from its initial state. A number between 1
and M + P is selected. Then, mutation
operator of the source (Mahdavi et al. [38])
is used for the mutation. After mutation, the
feasibility of constraints (8) and (9) is
evaluated. The procedure continues if it is
true; otherwise, the made change returns.

4.  The size of the next population is the same
as the previous one, which is derived from
selecting the best solutions by comparing
the previous generations and the solutions
generated by mutation and crossover

operators.

5. Check stopping criteria (number of
iterations).

6.  If the stopping condition is not met, go to
step two.
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r=1 (index for population)

% 4\ Yes

The number of all machines of the No

cell =0 population<r
\Z

i=1 (index for machine and part) rertl

v No 4\

No s
Finding the value of the
_— —> fitness function
Yes
Yes
No
i<M

W

Yes Generate a random integer between

1to C—d
Generate a random integer

between 1 to C—d

Vv

Vv

Is there a machine in all
cells that its queue length
is infinite?

The number of assigned
machines to cell d< M,,q

The number of machines of the cell d +1— the number of
machines of the cell d
(particle) X(i) « d

Is the machine queue
length in the cell d,
infinite?

v

\ No

rer-1
i=M+P+1 The part i on which machines need to
be processed?

v

. Adding the arrival rate of the part i to
X(@i) «d the queue length machines that are
needed to process on them

\

Is there the machine that its queue
length is infinite?

i—itl

Subtract the arrival rate of part
i of the queue length of
machines that are needed to
process on them

Fig. 4. Heuristic algorithm to generate a feasible initial population
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Begin MPSO

‘ Create initial population (Fig. 4) and set i=1 ‘

V;

C

alculating the pbest; and gbest

‘ Fitness evaluation }%

W

[l

P <Positions where the elements X; and P; are not equal

Generated Q and set j=1
-

If Q(j) = 1, the change is made (namely, %;(P(j)) < P:(P()))

Does next
position for
P exist?

The made change
returns

\r

Constraints (8) and (9) are
satisfied?

P —Positions where the elements x'; and fJ'g are not equal?

¥

Generated Q and set j=1

V

If Q(j) = 1, the change is made (namely, ;;,(P(])) < pg(P()))

Does next
position for
P exist?

\

No
The made change Constraints (8) and (9) are
returns satisfied?
Yes
Fitness evaluation N Update gbest and pbest;

population > i

!

Maximum iteration > Iteration

Fig. 5. Flowchart of the MPSO algorithm

4. Computational Results
This section describes some computational
experiments which are implemented to evaluate
the efficiency and performance of the proposed
GA and MPSO algorithms in finding solutions
with high quality. For this purpose, 19 sample
problems are defined, and then solved by Lingo
Software’s B&B algorithm, MPSO, and GA.
Finally, generated solutions will be compared

with each other and with other solutions quality
and solving time criteria. The proposed model is
coded in LINGO 8.0 optimization software, and
the proposed metaheuristic algorithms are coded
in MATLAB 2010a on a computer with 2.99 GB
RAM and core i3 with 3.1 GHz processor. For
each problem, 5400 seconds (1.5 hours) are
allowed to run. In B&B algorithm (obtained by
Lingo software package), if the problem is solved
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less than 5400 seconds (1.5 hour), it is
categorized as small to medium-sized problems;
otherwise, it is categorized as large-sized
problems. This procedure is similar to that of
Safaei et al. [39].

4-1. Parameters tuning

Since the efficiency of the metaheurstics
algorithms depends strongly on the operators and
the parameters, design of experiments is done to
set parameters. Design of experiments finds the
combination of control factors that has the lowest
variation, which aims for robustness in solutions.
To cover different sizes, instances with small size
(8%11), medium size (9%18), and large size
(16x30) have been selected. The MPSO and GA
parameters are set using a full factorial design
and Taguchi technique design, respectively.

4-1-1. Parameter setting for the proposed
MPSO

In this section, parameters of the MPSO are
selected using the full factorial design. In this
study, a full factorial design has been used to
determine the best combination of these
parameters. The resulting experiment has been
analyzed by means of a multifactor analysis of
variance (ANOVA) technique. The interactions
of the factors are neglected, because their F ratios
were small. The response variable for this
experiment is the linearization objective function.
The experiments are performed for three
categories of small, medium, and large instances.
Tables 1, 2, and, 3 present the parameters and
their candidate values (levels) for small size,
medium size, and large size, respectively. Tables
4, 5, and 6 present experimental design ANOVA
for small size, medium size, and large size,
respectively. In ANOVA table, for each factor or
interaction, DF represents the degrees of
freedom, SS is the sum of squares, MS is the
mean squares, F represents the F-ratio, and
finally P represents the p-value. The MPSO
parameters are obtained using the main-effects of
plot of the presented levels (see figures 6-8). A
summary of the two proposed MPSO parameters
is given in Table 7.

Tab. 1. Experimental factors and their
levels for small size

Tab. 2. Experimental factors and their
levels for medium size

Parameters Levels Values

{500, 600, 700, 800, 900,

population 11 1000, 1100, 1200,
1300,1400,1500}
Iteration 10 {30, 40, 50, 60, 70, 80,

90, 100, 110, 120}

Tab. 3. Experimental factors and their
levels for large size

Parameters Levels Values

{4600, 4700, 4800, 4900,

population 10 5000, 5100, 5200, 5300,
5400, 5500}
Iteration 7 {30, 40, 50, 60, 70, 80, 90}

Tab. 4. ANOVA table for MPSO for small
size instance

Source DF SS MS F P

population 8 264714 33089 642 0.000
iteration 10 6.8350  0.6835 133 0218
Population ¢ 34 8620 04358 085 0.803
1teration

Eror 198 102.0000 0.5152

Total 296 170.1684

Tab. 5. ANOVA table for MPSO for
medium size instance

Source DF SS MS F P

population 10 20.5576 2.0558 3.04 0.001
iteration 9 10.7303 1.1923 1.76  0.076

Population g4 ¢4 1697 07130 1.06 0371
1teration

Error 220 148&666 0.6758

Total 329 244;24

Parameters Levels Values

{100, 150, 200, 250, 300,
350, 400, 450, 500}
(35, 40, 45, 50, 55, 60, 65,
70, 75, 80, 85}

population 9

Iteration 11

Tab. 6. ANOVA table for MPSO for large
size instance

Source DF SS MS F P

population 9 9.314 1.035 0.88 0.548

iteration 6 13.200 2200 1.86 0.091

Population 54  66.419 1230 1.04 0.416

*iteration

Error 140 165.333 1.181

Total 209 254.267

Tab. 7. The obtained value of MPSO

paramete rs
Parametesrlze 8x11  9x18  16x30
population 400 1000 5400
Iteration 65 110 90
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Fig. 8. Main-effects plot for large size

4-1-2. Parameter setting for the proposed GA

Due to the large number of parameters in the
proposed GA algorithm, finding the best
combination of parameter levels which improves
the performance and robustness of the proposed
algorithm is important. The best and, of course,

the most exhaustive and time-consuming
approach is full-factorial. However, in most
cases, like this case, this approach is inefficient
due to the large number of factors and their
respective levels. In the Taguchi method,
orthogonal arrays are used to consider a large
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number of decision variables with a small
number of experiments. In comparison to the full
factorial methods, the Taguchi method is more
efficient, especially in large-scale cases. Five
parameters (factors) are considered for the
proposed GA. From the Taguchi standard table of
orthogonal arrays, the orthogonal array L16 is
selected as the fittest orthogonal array design
which fulfills the experimental design. The
experiments are performed for three categories of

small, medium, and large instances. Tables 8, 9,
and 10 present the parameters and their candidate
values (levels) for small size, medium size, and
large size, respectively. After obtaining the
results of the Taguchi experiment, the SN ratio
for each experiment is calculated. Figures 9, 10,
and 11 show the mean SN ratio obtained at each
level for the proposed GA. A summary of five
proposed GA parameters is given in Table 11.

Tab. 8. Experimental factors and their levels for small size

Parameters Levels Values
population 4 {350, 400, 450, 500}
Iteration 4 {55, 60, 65, 70}
Probability of crossover 4 {0.5,0.6,0.7, 0.8}
Probability of mutation 4 {0.3,0.4,0.5, 0.6}
Number of members competing in the tournament 2 {2, 3}

Tab. 9. Experimental factors and their levels for medium size

Parameters Levels Values
population 4 {1000, 1100, 1200, 1300}
Iteration 4 {100, 110, 120, 130}
Probability of crossover 4 {0.8,0.7,0.6, 0.5}
Probability of mutation 4 {0.3,0.4,0.5, 0.6}
Number of members competing in the tournament 2 {2, 3}

Tab. 10. Experimental factors and their levels for large size

Parameters Levels Values
population 4 {5300, 5400, 5500, 5600}
Iteration 4 {80, 90, 100,110}
Probability of crossover 4 {0.5,0.6,0.7, 0.8}
Probability of mutation 4 {0.3,0.4,0.5,0.6}
Number of members competing in the tournament 2 {2,3}
Tab. 11. The obtained value of GA parameters
Size 8x11  9x18 1630
parameter
Population 350 1100 5500
Iteration 60 110 100
Probability of crossover 0.8 0.7 0.7
Probability of mutation 0.3 0.6 0.4
Number of members competing in the tournament 3 2 3
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Fig. 9. The mean SN ratio plot for each factor for small-size
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According to the Lingo software’s results, Fpagt
shows the best feasible objective function value
(OFV) which has been found so far. Fyoung
indicates the bound on the objective function
value. Thus, a possible domain for the optimum
value of objective function (F*) is limited
between Fpegr = F* = Fpoung- Table 12 and
Table 13, indicate the comparison of the Lingo
software’s B&B algorithm results with MPSO
and GA corresponding to 19 test problems for
states ignoring reliability and considering
reliability, respectively. Each problem is ran 10
times and the average of OFV (Z,y¢), best OFV
(Zpest), and also average of run time (Typsg) are
represented in these two tables. The relative gap
between the best OFV found by Lingo (Fpest)
and Z,,. that is found by metaheuristic
algorithms are shown in column “‘G,ye’’. The
Gaye is calculated as: Guye = [(Zave — Fpest)/
Fpest] X 100. Also, the relative gap between
Fpest and Zpest is shown in column ““Gpes”’. In a

similar manner, the Gpest 1S calculated as:
Gpest = [(Zpest — Fpest)/Fpest] X 100. In Lingo
software’s B&B algorithm, if Fyound = Fpests
the optimal solution is achieved. In tables, in
some cases, Zyye and Zpesr are between Fyoung
and Fpee that shows a feasible better solution;
under this condition, G,ye and Gpegt are negative.
But, in cases that Z,y. and Zpest are out of the
domain of [ Fyest, Fhoundl; Gave and Gpest Will be
positive numbers. For comparing MPSO and GA,
some columns are defined as: Ga-ave, Ga-best,
and R that are formulated as follows: Ga?’¢ =
(Zg/‘l,%so _ Zg\f\e)/Zg’\[,ESO . GaPest = (Zg/lel;?o _
Zipest)/Zoest > and R = (Tupso — Toa)/Toa »
respectively.

As mentioned above in small to medium sizes
examples, a limited run time (1.5 h) is considered
for Lingo solver to find optimal solutions.
Therefore, as it can be concluded from Table 12
and Table 13, the percent error of optimal
solution is very low when different problems are
selected. Also, in large-sized examples, MPSO

International Journal of Industrial Engineering & Production Research, June 2016, Vol. 27, No. 2



134 B. Esmailnezhad & P. Fattahi

Formation of Manufacturing Cell Using Queuing Theory ...

and GA perform better than the Lingo software’s
B&B algorithm in some problems in limited time.
It implies that MPSO and GA algorithms are so
effective to solve the proposed model in all
classes of problems. In large-sized problems,
metaheuristic algorithms, which have been used,
generate better solutions from lingo software’s
B&B algorithm or solve problems with negligible
error. It is obvious that the solving time for
metaheuristic algorithms with increasing the size
of the problem is much less than Lingo
software’s B&B algorithm. Paired t test was
conducted to analyze significant difference
between the obtained solutions of the algorithms
in the two states ignoring reliability and
considering  reliability,  respectively. = The
statistical details are shown in Tables 14 and 15.
Tests show that there is a statistical significant
difference between solutions obtained by MPSO
and GA in both states. By regarding both tables,
it can be gathered that the obtained solutions by
GA are apparently better than MPSO in both
states ignoring reliability and considering
reliability.

For comparison of effect of machine failure given
in the Tab. 16, the best solutions obtained from
three algorithms have been used in both states
ignoring reliability and considering reliability.
The reliability consideration makes smaller
solution space, so the value of the objective
function has been deteriorated. Because the
objective function of this model is minimized,
row of the reduction percent in the Tab. 16.

have has values negative. Optimal solutions of
example 7 have been given for evaluated effect of
reliability in two states ignoring reliability and
considering reliability (see Fig. 13 and Fig. 12).
The service capacity of machines decreases in
state considering reliability (multiply term

MTBF;

(—MTTR]_+M',FBF]_) <1 by term ;). Thus, the
number of parts, which their operations are
outsourced, would increase. The results of
solving numerical examples show that the
reliability consideration has significant impacts
on the final block diagonal form of machine-part
matrices.

5. Conclusions
In this paper, a conceptual framework and a
mathematical model were proposed as a queue
system. Machine as server and part as customer
were considered. The inter-arrival time between
two consecutive customers had exponential
distribution, and service time had been
distributed generally. The objective function of
model minimized inter-cell movements until it

formed optimal cells. Machines are key elements
in manufacturing systems and their breakdowns
can badly affect system performance measures.
The results show that although the reliability
consideration has significant impacts on the final
block diagonal form of machine-part matrices, it
can reduce the value of production rate. As the
CF problem is NP-hard, by increasing the size of
the problem, Lingo stops solving it; due to the
increase of computational time, the B&B
algorithm is unable to give good solutions.
Therefore, it 1is necessary to present a
metaheuristic approach to solve this model for
large-scale  problems. Two  metaheuristic
algorithms based on genetic and MPSO
algorithms were developed to solve problems.
Finally, solutions generated by MPSO, GA, and
Lingo software’s B & B were compared with
each other by considering solving times. This
comparison showed the high efficiency of the
proposed metaheuristic algorithms for large-sized
problems versus Lingo software’s B&B.
Solutions generated by GA are apparently better
than MPSO algorithm solutions. The following
scopes can be interesting fields for future
research:
e Development of the model considering facility
layout
e Considering costs in the framework of this
study
e Development of the model -considering
dynamic state
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Tab. 12. Comparison B&B, MPSO, and GA runs for state ignoring machine reliability
B&B MP O GA MPSO & GA comparison(%)
ProNb(}fem I\'iz‘nzf mI;]c()k;i(r)lis I\(]:Zil(;f Mmax Fbest Fbound T?S;B Zave  Zbest TN;;SO C;v%e G(ob/:)s t Zave Zbest Tg )A C;v%e G(ob/:; t Ga-ave Ga-best R
1 4 4 2 3 2 2 0 2 2 0 0.00 0.00 2 2 1 0.00 0.00 0.00 0.00 -100
2 5 5 2 3 0 0 0 0 0 0 0.00 0.00 0 0 1 0.00 0.00 - - -100
3 7 6 2 3 1 1 1 1 1 2 0.00 0.00 1 1 1 0.00 0.00 0.00 0.00 100
4 8 6 2 4 7 7 1 8 8 0.9 14.29 14.29 8 8 1 14.29 14.29 0.00 0.00 -10.00
5 9 7 3 4 6 6 1 6.6 6 1 10.00 0.00 6 6 1 0.00 0.00 9.09 0.00 0.00
6 11 8 3 4 10 10 14 10.4 10 1 4.00 0.00 10.3 10 1 3.00 0.00 0.96 0.00 0.00
7 12 9 3 4 16 16 60 17.5 17 6.1 9.38 6.25 17 17 12.5 6.25 6.25 2.86 0.00 -51.20
8 18 8 3 5 19 19 115 20.3 19 49 6.84 0.00 19.4 19 13 2.11 0.00 4.43 0.00 -62.31
9 17 10 3 5 20 20 204 21.7 21 5.8 8.50 5.00 21 21 13.6 5.00 5.00 3.23 0.00 -57.35
10 18 9 3 5 22 22 1531 23.1 22 53 5.00 0.00 222 22 13.1 0.91 0.00 3.90 0.00 -59.54
11 19 9 3 5 28 28 251 30.9 30 8 10.36 7.14 30.1 30 12.7 7.50 7.14 2.59 0.00 -37.01
12 20 9 3 5 27 27 1303 28.8 28 7 6.67 3.70 27.9 27 12.8 3.33 0.00 3.13 3.57 -45.31
13 19 10 3 5 34 34 772 36.2 35 11 6.47 2.94 35.8 34 12.8 5.29 0.00 1.10 2.86 -14.06
14 24 11 4 5 31 28 5400 342 32 34.1 10.32 3.23 32.9 32 264.8 6.13 3.23 3.80 0.00 -87.12
15 24 14 4 5 22 19 5400 24.5 23 34.6 11.36 4.55 23 22 279 4.55 0.00 6.12 435 -87.60
16 30 16 4 5 68 56 5400 70 68 58.6 2.94 0.00 69 68 267.6 1.47 0.00 1.43 0.00 -78.10
17 35 20 4 7 79 63 5400 78.5 75 62.1 -0.63 -5.06 77.9 75 290.9 -1.39 -5.06 0.76 0.00 -78.65
18 37 20 5 7 108 87 5400 106.3 104 61.2 -1.57 -3.70 106.3 105 308.3 -1.57 -2.78 0.00 -0.96 -80.15
19 43 22 5 7 72 57 5400 74.5 72 64.4 3.47 0.00 73.4 72 342.6 1.94 0.00 1.48 0.00 -81.20
average 5.65 2.02 3.09 1.48 2.49 0.55 -48.93
Tab. 13. Comparison B&B, MPSO, and GA runs for state considering machine reliability
B&B MPSO GA MPSO & GA comparison(%)
Problem - No. of - No.of = No.of  nppy  phest  Fbound  POBC zave  zbest  TMPSO() TN Goest)  zave  zbest  TGA®) 9" Ghes%) Ga-ave  Gabest R
No. parts machines cells ) ) )
1 4 4 2 3 2 2 0 2 2 0 0.00 0.00 2 2 1 0.00 0.00 0.00 0.00 -100
2 5 5 2 3 1 1 0 1 1 0 0.00 0.00 1 1 1 0.00 0.00 0.00 0.00 -100
3 7 6 2 3 1 1 0 1 1 2 0.00 0.00 1 1 1 0.00 0.00 0.00 0.00 100.00
4 8 6 2 4 8 8 1 8 8 1 0.00 0.00 8 8 1 0.00 0.00 0.00 0.00 0.00
5 9 7 3 4 7 7 3 7.8 7 1 11.43 0.00 7 7 1 0.00 0.00 10.26 0.00 0.00
6 11 8 3 4 10 10 7 10.8 10 1 8.00 0.00 10 10 1 0.00 0.00 7.41 0.00 0.00
7 12 9 3 4 17 17 35 18 17 1 5.88 0.00 17 17 12.5 0.00 0.00 5.56 0.00 -92.00
8 18 8 3 5 20 20 111 21.5 21 5.6 7.50 5.00 20.4 20 12.9 2.00 0.00 5.12 4.76 -56.59
9 17 10 3 5 21 21 63 23.4 23 1.2 11.43 9.52 23 23 13.1 9.52 9.52 1.71 0.00 -90.84
10 18 9 3 5 23 23 551 24.5 23 6.5 6.52 0.00 23.1 23 12.9 0.43 0.00 5.71 0.00 -49.61
11 19 9 3 5 31 31 128 31.3 31 8.4 0.97 0.00 31 31 12.7 0.00 0.00 0.96 0.00 -33.86
12 20 9 3 5 28 28 415 29.6 29 8 5.71 3.57 28.3 28 12.9 1.07 0.00 4.39 3.45 -37.98
13 19 10 3 5 36 36 1952 37.4 36 10.1 3.89 0.00 37 36 13.1 2.78 0.00 1.07 0.00 -22.90
14 24 11 4 5 33 31 5400 35.8 34 36.3 8.48 3.03 344 33 259.6 4.24 0.00 3.91 2.94 -86.02
15 24 14 4 5 25 19.23 5400 26.5 25 374 6.00 0.00 25.2 25 277.9 0.80 0.00 491 0.00 -86.54
16 30 16 4 5 73 59.59 5400 71.5 68 58.2 -2.05 -6.85 70.9 69 269.6 -2.88 -5.48 0.84 -1.47 -78.41
17 35 20 4 7 79 69 5400 79.9 77 68.8 1.14 -2.53 79.7 77 290.3 0.89 -2.53 0.25 0.00 -76.30
18 37 20 5 7 110 91.03 5400 107.3 104 64.4 -2.45 -5.45 108 106 308.1 -1.82 -3.64 -0.65 -1.92 -79.10
19 43 22 5 7 74 63 5400 75.7 74 65.2 2.30 0.00 75.4 74 3354 1.89 0.00 0.40 0.00 -80.56
average 3.93 0.33 1.00 -0.11 2.73 0.41 -51.09
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Tab. 14. Detailed statistics of paired t test for state ignoring machine reliability

Paired Differences t df Slg' (2-
tailed)
Mean Std. Std. Error 95% Confidence Interval of the
Deviation Mean Difference
Lower Upper
Pairl
MPSO-GA .59474 47897 .10988 36388 .82559 5412 18 .000

Tab. 15. Detailed statistics of paired t test for state considering machine reliability

Paired Differences ¢ oar e
tailed)
Mean Std. Std. Error 95% Confidence Interval of the
Deviation Mean Difference
Lower Upper
Pairl
MPSO-GA .55789 .59002 13536 27351 .84228 4122 18 .001

Tab. 16. comparison of effect of machine failure for two states ignoring reliability and
considering reliability

Problem 1 203 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
number
machine 20 1 7 6 10 16 19 20 2 28 27 34 31 2 68 75 104 7
reliability
considering
machine 211 8 7 10 17 20 21 23 31 28 36 33 25 68 77 104 74
reliability
g:ri‘;‘:"“ 000 - 000 -1429  -1667 000  -625 -526 -500 -455  -10.71  -370 -5838  -645  -13.64 000  -2.67 000 -2.78
7 8 9 1 2 Part 4 5 6 11 12
1f{1 0 10 1.0 1 0 0 0 0 O
31171 110 0 0 0 01 0 0 O
6/1 1 1|1 1 1 1 O 1 O O O
Machine 710 1 1|1 0 0 1 0 O O O O
4 0 0 1|0 O 1 10 0 0 0 1
20 0000 O Of1 01 0 1
51 0 0 0 0O O[O0 1 0 1 o0
8 1. 1. 01 00 0|0 1 O 1 O
90 001 00 01 01 0 1
Fig. 12. Optimal solution of example 7 for state considering machine reliability
1 11 3 4 5 Pat 8§ 12 2 9 10
81 1{0 0 1 0 1 1 O O O O
20 0|01 01 00O 1]/]0 0 O
) 30 0/0 O 1 01 1 O0]0 1 O
Machine 50 1/0 01 01 0 O0]0 O0 O
9 1 00 1 O 1 0O O 1|0 O O
1 0 0 000 01 0 O}(1 1 1
4 0 0 1 0 0 0 O O 11]0 1 1
6 1 0 1 01 01 1 o1 1 1
7 1 0 0 0O O O O 1 O}|0 1 1
Fig. 13. Optimal solution of example 7 for state ignoring machine reliability
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