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Supply chain management, This paper addresses a production and outbound distribution
g‘i’g?ﬂ;’“tingr" scheduling problem in which several jobs have to be processed on
Batchi#go ’ a single machine for delivery to customers or to other machines

for further processing. We assume that there is a sufficient number
of vehicles. Also, it is assumed that the delivery cost is
independent of batch size, but it is dependent on each trip. In this
paper, we present an Artificial Immune System (AIS) for this
problem. The objective is to minimize the sum of the total weighted
number of tardy jobs and the batch delivery costs. A batch setup
time has to be added before processing the first job in each batch.
Using computational test, we compare our method with an existing
method for the mentioned problem in literature, namely Simulated
Annealing (SA). Computational tests show the significant
improvement of the AIS over the SA.

Artificial immune system
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1. Introduction delivery cost, so considering both the delivery

Two key operational functions in a supply chain
scheduling are production and distribution
operations. In a supply chain, it is critica to
integrate or simultaneously consider these two
functions and plan and schedule them jointly in a
coordinated manner to achieve an optima
operational performance. Classical scheduling
problems did not consider distribution and
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cost and scheduling objective in integrated model
is an important subject. Chen [1] reviewed the
Integrated Production and Outbound Distribution
Scheduling, namely |IPODS, modds and
classified these problems into five groups.
Problems with an objective function that consider
both the machine scheduling and delivery are
rather complex. However, they are more
practical. But, the body of literature on
combined-optimization batch delivery problems,
especially with large size solution, is small [2].
Hall and Potts studied the problem of production
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scheduling on a single machine under the batch
availability assumption (distribution scheduling)
with several objectives including the sum of flow
times, maximum lateness, and the number of late
jobs. Batch availability assumption means that all
the jobs forming a batch become available for
later processing or dispatch only when the entire
batch has been processed [3-6]. They presented
dynamic-programming algorithms for
minimizing the mentioned objectives with
delivery costs when the batches are to be
delivered to several customers separately [3].
This paper addresses the minimizing sum of total
weighted number of tardy jobs and delivery costs
for multi-customer in a single machine
environment and presents an AlS agorithm for
solving it for the first time. The minimum
number of tardy jobs, i.e, 1//Y U;, is obtained
by the polynomia Moore's agorithm for the
single machine environment [7]. The weighted
version of problem, i.e., 1// ¥ w;U;, is hard [8].
For 1//Xw;U; A, a Fully Polynomia Time
Approximation Scheme, FPTAS, was provided
by Sahni [9]. Later, Gens and Levner improved it
twice [10, 11]. In addition, Hallah and Bulfin
developed Branch and Bound, B&B, method for
this problem considering zero ready time and
non-zero ready time [12, 13]. Hochbaum and
Landy proposed a dynamic programming
algorithm for the batching version of the
problem, i.e., 1/s/ ¥ w;U;, in which jobs are
processed in batches which require setup time s
[14], and later Brucker and Kovalyov improved it
[15]. Nevertheless, none of these studies
considered the delivery costs. Steiner and Zhang
addressed the similar problem, i.e., scheduling
and batching problem delivery to a customer,
considering the minimizing sum of the tota
weighted number of tardy jobs and delivery costs
on the single machine with batch setup time; they
presented optimal properties and a pseudo-
polynomia time DP agorithm for the optimal
solution [16]. Also, they presented a pseudo-
polynomial DP and an FPTAS for restricted case
of multicustomer, where tardy jobs are delivered
separately at the end of schedule [17]. Recently,
Assarzadegan and Rasti-Barzoki [18] have
studied the problem of minimizing the maximum
tardiness, due date assignment, and delivery costs
on a single machine. They presented two
mathematical programming models and two
metaheuristic algorithms, an adaptive genetic
algorithm, and a parale-simulated annealing
algorithm, for solving it.

Some researchers have applied metaheuristic
algorithms to solve scheduling problem [19-21].

In this research, we present an AIS method for
this problem and compare it with SA and MINLP
approaches introduced by Mazdeh et a. using
computational test [22]. 1/s/V (o0, ), direct/
k/ X% wj Uj + Xii—1 Ok By is representation of
our problems regarding notation that Chen [1]
introduced for these types of problems. This
notation means that there is the single machine
for processing jobs with batch setup time, s, and
sufficient vehicle by unlimited capacity and
directing delivery method for sending the batches
to K customers. Directing delivery method means
that orders are transmitted to each customer
without the routing problem. ¥7_, w; U; is the
total weighted number of tardy jobs and
YK 10k By is the total delivery costs where 6,
and B;, are delivery costs unit and the number of
batches for each customer, respectively. Chen [1]
presented an important review on the literature
regarding integrated production and distribution
scheduling models. So, we do not go into any
more detail.

The rest of this paper is organized as follows:
Section 2 contains the problem definition. AIS
structure and our proposed algorithms are
provided in section 3. Section 4 describes and
analyzes the computationa results. And, the last
section contains our conclusions.

2. Notations and Problem Definition
2-1. Notations
Indexes
j Job index
k Customer index
Parameters:
n Number of jobs
K Number of customers
Sk Batch setup time for jobs belong to
customer k
D; Processing time of job j
d; Due date of job j
wj Weight of job j
0y Delivery costs for sending batch to
customer k
Decision variables:
U; Oneif job j be tardy and zero otherwise
By, Number of batches for customer k
Immune system notations:

N Number of iteration in local search
PS Population size

a; Local optimum factor in iteration i
o Mutation rate

f Affinity value of antibody

1) Control factor of decay
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2-2. Problem definition

There are K customers and one manufacturer in
which each customer k orders n; jobs to the
manufacturer and n = YX_, n, is the number of
jobs. No job can be preempted. Each job has an
important coefficient w;. It is assumed that jobs
need one operation and manufacturer does it by a
single machine, with P processing time. The due

date of job j is d;. Jobs are processed and sent in

batches to each customer. A batch can contain jobs
only for the same customer. This assumption is
common in literature for example see [4-6, 16, 17,
23-25]. We assume that each batch has a sequence-
independent-batch setup time s,. There is a
sufficient number of vehicles, and the delivery
cost is independent of batch size, and it is shown
by 6, for customer k for each trip . The number
of batches for customer k is represented by B,
which is a decision variable. The objective is to
minimize the sum of the total weighted number of
tardy jobs and delivery costs. So, as mentioned
earlier, this problem can be shown by 1/s/
V (o0, ), direct/k/¥7_, w; Uj + Y§=1 O By

3. Artificial Immune System
The immune system is an information processing
and self-learning system that offers inspiration to
design AIS. In the last decade, the immune
system has drawn significant attention as a
potential source of inspiration for novel
approaches to solve complex computationa
problems [26]. Some researchers used the AlS to
solve the scheduling class problems [27-33]. In
this paper, a metaheuristic algorithm based on
AlSfor the first timeis used to minimize the total
weighted number of tardy jobs and delivery costs
in two-level supply chain.
There are several immune algorithms such as
negative selection agorithm, clonal selection
algorithm, and artificial immune networks. In this
paper, solution procedure is based on the clonal
selection agorithm, in which only the highest
affinity antibodies proliferate. In order to
understand the AIS, some preliminary biological
terms are required to be characterized [34, 35]:
Immune cells: B-cells and T-cells are the two
main groups of immune cells. These cdls help
recognize an almost limitless range of anti-genic
patterns.
Antigens (Ag): These are disease-causing
elements that are divided into two types of
antigens. self and non-self. Non-self-antigens are
disease-causing elements, whereas self-antigens
are harmless to the body.

Antibodies (Ab): It is a molecule produced by a
B-cell in response to an antigen and has the
particular property of combining specifically with
the antigen, which induced its formation.

In the biologica process, when an antigen
contacts with the immune system, it releases a set
of B-cells, present in the immunological memory,
with the function of identifying and eliminating
the antigens. Those B-cells that recognize the
antigens with a minimal affinity are chosen for
cloning and the number of clones of a particular
cell is defined according to its antigen affinity.
The cels undergo somatic hypermutation after
the cloning processin order to try to eliminate the
antigen. The cloning and mutation processes are
repeated until the antigen is eliminated. Finaly,
the cells with the highest affinity areincluded in
the immunological memory[36].

Hypermutation and receptor editing are two
important characteristics of the immune system.
They help in the maturation of the progenies, as
antibodies present in memory response must have
a higher affinity than those in the earlier primary
response. Hypermutation is similar to the
mutation operator of the genetic algorithm. The
difference lies in the rate of modification that
depends on the antigenic affinity.

In genera, the antibodies with lower antigenic
affinity are hypermutated at a higher rate as
compared to the antibodies with higher antigenic
affinity. This phenomenon is known as receptor
editing, which governs the hypermutation. The
main task of hypermutation is to guide toward
local optimal, whereas receptor editing helps to
escape the local optima.

In the rest of this section, our AlIS properties are
introduced in detail.

3-1. Encoding schema

In the proposed algorithm, an antibody includes
some genes, such that each gene shows the batch
number of each job. This encoding scheme is
shown in Figure 1. This Figure shows that job 1
places in batch 5, job 2 places in batch 2, and the
other jobsin the similar way.

Jobs:. |1|2|3|4[5|6|7]|8 10

©

Baiches: [5/2]2[4|1|3|5|2|1]3

Fig. 1. Antibody encoding

As mentioned before, [22] proposed simulated
annealing algorithm to solve this problem. In
their algorithm, solutions are encoded by a matrix
depicted in Figure 2 where the rows represent the
batches and the columns represent the customers.
For instance, if the element in row 2 and column
1lisone, the first order of customer 1 is assigned
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to batch 2. Therefore, for each solution, a matrix
is formed with n?elements, whereas base on our
encoding, for each solution, an array is formed
with n elements.

Decision variables
(Xij)

8 < 1 0 -
S 0 1
8d ( )

~—

Fig. 2. Solution encoding of SA[22]

3-2. Affinity calculation

In the proposed algorithm, it is needed to
calculate affinity of antibodies. Since the godl is
to minimize the objective function and the
affinity value should be maximized in the AIS
algorithms, the minus objective function value is
considered as the affinity value.

3-3. The proposed algorithm

The main framework of the proposed algorithmis
described as follows:

Initialization.

While (has not met stop criterion) do

Local search.

Proliferation.

Hypermutation.

New generation.

. End.

Each steps of this algorithm is described as
follows:

. Initialization

In this stage, a random initia population of size
PS is created. For each antibody, the value of each
gene is determined randomly in the range [1,n] in
which the vaue of each gene is unique. In this
paper, with the help of initial experiment, the size
of population (PS) is considered equal to 12.

Il.  Local search

For each antibody, the following process is done
N times:

One gene is selected randomly. Then, the value
of this gene that represents the related batch is
changed to a new batch that includes either no
job or the other jobs of the customer of that gene;
consequently, the new solution is formed. Then,
the affinity value of the new solution is
calculated. If the blown equation is satisfied, the
antibody will be replaced by the new solution.

NogrwdhpE

AFView

< ,
ARV, = 1+a; D

Where AFV, is the affinity value of antibody,
AFV,,,, is the affinity value of the new

solution, and «; is the local optimum factor in
the iteration. This factor leads to escape
algorithm from local optimum. At first, « value
is equal to zero; when the best solution is not
improved in three consecutive iterations, for
the first time, its value will be equal to initial
value. In each iteration, a value is decreased
base on equation (2) as follows:

Wimirs
G = O @
Where «;,., is the loca optimum factor in
iteration i + 1, «; is the local optimum factor in
iteration i, Qipitiay 1S the initial value of local
optimum factor, ITN is the number of iteration,
and IF is the iteration that the value of local
optimum factor will be equal to initial value for
thefirst time.

With this equation, the value of local optimum
factor in the last iteration will be equal to zero.
As aresult, the diversity in the primary iterations
is greater than the last iterations. In this paper,
with the help of initial experiment, the values of
Qinitiar @d N are considered equal to 0.005 and
80, respectively.

I1l.  Proliferation

In this process, some clones are produced from
each antibody. As in Reisi and Modlehi[28], the
following equation is used to caculate the
number of clones that each antibody produces.

n. = PS X AFF ©)

Where n, is the number of clones, PS is the size
of the initia population, and AFF is the
cumulative probability of the antibody. For each
antibody, AFF is obtained by dividing its affinity
value by the sum of all the antibody affinities.

IV. Hypermutation

After the proliferation stage, the mutation
operator is performed for each clone. In mutation
procedure, one gene is selected randomly. Then,
the value of this gene that represents its batch is
changed to a new batch that includes either no
job or the other jobs of the customer of that gene.
Asin Kumar et al.[34] and Agarwal et al.[35], the
mutation rate of each clone is calculated based on
the following equation:

o =exp(—8§ X f) 4

Where ¢ is the mutation rate, § is the control
factor of decay, and f is the affinity value of
antibody. In this paper, the value of & is
calculated based on equation (5):
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6= 5
=-3 )

where f is the average affinity value of the
population.

V. New population

After the hypermutation process is done and the
affinity of the hypermutated solutions are
calculated, select the fixed number (d) of best
antibody for the next generation. In this paper,
based on initial experiment, d is considered equal
to 40% of PS.

VI. Stop criterion

Using computational pre-test, the stop criterion is
considered as follows: if the best solution is not
improved after five consecutive iterations or after
a total number of 200 iterations, the agorithm
will be stopped.

4. Computational Results

In this section, in order to evaluate the
performance of AIS, both the smal- and
medium-size problems are considered. The AIS
and SA agorithms were coded using Matlab
2009 and run on a computer with a 2.93 GHz
CPU and a 2.00 GB RAM. The MINLP model
was coded in GAMS and solved by BONMIN
solver, because our pre-test shows BONMIN is
the most efficient solver for solving the
mentioned problem. In smal and medium-size
problems, we have compared results of the
proposed algorithm with MINLP and SA,
respectively. The details will be given in the
following related subsections.

4-1. Problems withn = 4,7 and 10

The number of jobs in small-sized problems was
set 4,7 and 10. The number of customers for
each n was defined by a uniform distribution in
the interval [1,n]. Processing times, batch setup
times, and job weights were randomly-generated
integers from the uniform distribution defined on
[1100], [00.5p], and [1100], respectively.
Based on the batch delivery costs values, we
generated two classes of problems, namely A and
B, for each given number of the job. For class A

and class B, the intervals that the delivery costs
were generated randomly are [0 w] and [0 10w],
respectively. For each class, we generated three
subclasses, namely 1, 2, and 3, based on the due
dates values; therefore, we have six groups,
namely A-1, B-1, A-2, B-2, A-3, B-3. For groups
(A-1, B-1), (A-2, B-2), and (A-3, B-3), the
intervals that the due dates values were generated
randomly are [0 0.5n(5 + p)], [0 n(5 + p)] and
[0 5n(5 + p)], respectively.

For each job number in each group, 10 problems
were generated randomly. Hence, totaly 180
(3*2*3*10) problems in small-sized problems
were being generated and solved. A 300-second
time constraint was considered, and if the
problem could not be solved regarding this
constraint, then the procedure would no longer be
used for that problem. The results of the
experiment for small-sized problems are shown
in Table 1. Column “Number of the solution in
which” of Table 1 shows that for all problems,
AIlS has produced objective function, i.e., tota
cost, less or equal to MINLP model. In detail,
AIS has produced objective vaue the same as
MINLP for 67.22% of problems and absolutely a
better result for 32.78% of problems.

In problems with four jobs, both MINLP model
and AIS dgorithm have found the optimum
solution for all problems in each group, but the
average run time of AlS algorithm is smaller than
the average run time of MINLP model for each
group of four jobs. The average run time of
problems with n = 4 is 0.38 second and 32.26
seconds for AIS and MINLP model, respectively.
In problems with 7 and 10 jobs, the average of
deviation in A-3 is smaler than A-2 and is
smaller than A-1 in A-2. This means that as the
due dates decrease the difference between AIS
and MINLP, objective function increases. In
addition, the average of deviation in B-1 is
smaler than A-1; in B-2, is smaller than A-2; in
B-3, is smaller than A-3. Therefore, as delivery
costs decrease the difference between AIS and
MINLP, objective  function increases.

Tab. 1. The result of experiment for small-sized problems, comparing AlS with MINLP

Delivery o pate Number of the solution in which Ave. of CPU time (s)
n Costs N
Colasses  Ubclass  AISKMINLP® AIS=MINLP MINLP<AIS  MINLP  AIS
1 0 10 0 48.02 0.39
A 2 0 10 0 41.62 0.37
4 3 0 10 0 7.82 0.37
B 1 0 10 0 30.95 0.36
2 0 10 0 50.21 0.36
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Delivery 5 o Date Number of the solution in which Ave. of CPU time (9)
n Costs "
Cclasses Subclass  AIS<MINLP®  AIS=MINLP MINLP<AIS MINLP AIS
3 0 10 0 14.97 041
1 8 2 0 - -
A 2 6 4 0 - -
7 3 0 10 0 - -
1 3 7 0 - -
B 2 4 6 0 - -
3 0 10 0 - -
1 9 1 0 - -
A 2 10 0 0 - -
3 1 9 0 - -
10 1 9 1 0 - -
B 2 8 2 0 - -
3 1 9 0 - -

* AIS<MINLP means that AIS has a better result (less total cost) than MINLP
“Since some problems have not been solved within 300 seconds by GAMS, the ave. of CPU time could not

calculated for them

4-2. Problems with n = 50,80,110 and 140

In this section, we have compared results of our
proposed algorithm, i.e., AlS, with SA proposed
by [22] in medium-sized problems. The number
of jobs in medium-sized problems was set
50,80,110,and 140. All parameters were

generated similar to the previous, but the number
of problems for each job number in each group
was set 20; hence, totally 480 (4*2*3*20)
problems in medium-sized problems were
generated. Table 2 shows the result of the
computational test for this problems.

Tab. 2. The result of experiment in medium-sized problems, comparing AIS with SA

Number of the solution in

Ave. of CPU time

SA-AIS AIS—-SA

n DCeZIcI;étesry DSUUSC?:: which (s AlS (%) T(%)
Classes AIS<SA AIS=SA SA<AIS SA AlS Avg. max  Avg. max
1 15 0 5 1.500 5.495 3328 18.613 0.647 5.687
A 2 20 0 0 1.612 4525 13.687 58.402 0.000 0.000
3 14 6 0 1.193 3.049 51.752 475.000 0.000 0.000
%0 1 18 0 2 3.548 4.639 2738 10109 0.041 0.768
B 2 16 0 4 2.840 5.031 1992 10.634 0.043 0412
3 14 6 0 2.402 3123 16.253 156.690 0.000 0.000
1 20 0 0 2.645 12279 8976 15.738 0 0
A 2 19 0 1 2.564 10.788  39.997 109.396 0.089 1.772
80 3 20 0 0 1.917 5701 35094 215205 O 0
1 20 0 0 4.939 12.007 6.011 28.028 0 0
B 2 20 0 0 4.428 12196 8645 61.892 0 0
3 19 1 0 4.190 7401 24106 155787 O 0
1 20 0 0 4.022 22207 14758 42.654 0 0
A 2 20 0 0 3.810 15892 30.030 95.338 0 0
110 3 18 2 0 2.895 9.891 50.717 300000 O 0
1 20 0 0 7.781 22657 10256 44.755 0 0
B 2 20 0 0 7.302 20.461 13377 75.304 0 0
3 19 1 0 5.488 11302 34.832 218156 O 0
140 A 1 20 0 0 5.037 34.630 14564 72.348 0 0
2 20 0 0 5.250 26.626 45.090 88.867 0 0

International Journal of Industrial Engineering & Production Research, June 2016, Vol. 27, No. 2



Artificial Immune System for Single Machine ...

M. Rasti-Barzoki, A. Kourank Beheshti & S.R. Hejazi 105

Number of the solution in

Ave. of CPU time SA-AIS AIS—-SA

n Dgtla\étesry QueDae which 9 s B =)
Classes AlIS<SA AIS=SA SA<AIS SA AIS Avg. max  Avg. max

3 19 1 0 3.963 17.211 108.856 595.625 O 0

1 20 0 0 9.941 39466 19.169 93.312 0 0

B 2 20 0 0 10.794 31236 28.379 89.023 0 0

3 19 1 0 6.759 17689 42434 187731 O 0

Table 2 shows that the AIS algorithm has found a
better solution, less objective function than SA
algorithm in 450 (93.75%) problems, and its
objective function is equal to SA for 18 (3.75%)
problems; hence, AIS has solved 97.5% of all
problems with less equal total cost with respect to
SA; SA has presented a better solution for only
2.5% of problems. However, the average run time

of AlS is larger than SA. Column SA;I‘;”S shows

the deviation of SA from AIS when AIS has
presented the better result than SA; Column

AI‘;SA shows the deviation of AlS from SA when

SA has presented the better result than AIS. The
average deviation of SA from AIS for 93.75% of
problems, for which AIS has presented better
result than SA, is 26.04%, while the average
deviation of AIS from SA for 2.5% of problems
that SA has presented better result than AIS, is
0.20%. The maximum deviation for SA and AIS
is 595.63% and 5.69% respectively. These results
shows that AlSis more efficient than SA.

It is obvious from Table 2 that problems in class
B has more average run time, for both SA and
AlS, than problems in class A. So, as delivery
costs increase, more time was required until the

stopping criteria hold. In general, the SAA—;:IS

value for subclass 3 is greater than subclass 2,
and for subclass 2 is greater than subclass 1.
Therefore, as due dates increase, the deviation of
SA from AlS increases.

5. Conclusion
This paper presents an AIS agorithm for the
scheduling and batching a set of jobs on a single
machine with batch setup time for delivery to
customers. In order to evaluate the performance
of the AIS agorithm, computational tests are
used. The computational results show that the
proposed AIS framework is more efficient than
the MINLP and the SA proposed by [22].
Considering some constraints such as the number
of vehicle and capacity for each vehicle, other
machine configurations for a manufacturer, such
as the paralel machine or flow shop, routing
delivery method, instead of directing delivery
method, can be suggested for future works. In

addition, another function for the total costs, such
as total weighted lateness and delivery costs are
suggested as well.
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