A Local Branching Approach for the Set Covering Problem

M. Yaghini*, M.R. Sarmadi & M. Momeni

Masoud Yaghini, Assistant Professor, School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
Mohammadreza Sarmadi, MSc., School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
Mohsen Momeni, MSc., School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

KEYWORDS
Heuristics, set covering problem, Local branching algorithm, Design of experiments

ABSTRACT
The set covering problem (SCP) is a well-known combinatorial optimization problem. This paper investigates development of a local branching-based solution approach for the SCP. This solution strategy is exact in nature, though it is designed to improve the heuristic behavior of the mixed integer programming solver. The algorithm parameters are tuned by design of experiments approach. The proposed method is tested on the several standard instances. The results show that the algorithm outperforms the best heuristic approaches found in the literature.

1. Introduction
The set covering problem (SCP) is a classical combinatorial optimization problem that is central in a variety of scheduling, routing, and location applications. The SCP is a main model for locomotive scheduling in rail transportation, where a given set of trains has to be covered by a minimum-cost set of locomotives that each train should be covered by at least one locomotive. Let $A = (a_{ij})$ be a 0-1 $m \times n$ matrix with $M = \{1, 2, \ldots, m\}$ and $N = \{1, 2, \ldots, n\}$ denoting, respectively, the sets of rows and columns of A. Let $c = (c_j)$ be n-vector of costs associated with the columns of A. We say that a column $j \in N$ covers a row $i \in M$ if $a_{ij} = 1$. The problem is to find a minimum cost column subset $S \subseteq N$ such that each row $i \in M$ is covered by at least one column $j \in S$. Let $x = (x_j)$ be the column vector of variables $x_j = 1$ if $j \in S$, $x_j = 0$ otherwise. The classic mathematical formulation for the SCP is as follows:

Minimize $z(x) = \sum_{j \in N} c_j x_j$ (1)

Subject to

$\sum_{j \in S} a_{ij} x_j \geq 1 \quad \forall i \in M$ (2)

$x_j \in \{0, 1\} \quad \forall j \in N$ (3)

Objective function (1) calculates the cost. Constraint (2) ensures that each row is covered by at least one column. Constraint (3) ensures the binary nature of decision variables [1].

The set covering problem is known to be NP-hard [2]. It has been considered in the literature as a basic formulation for many real-world optimization problems. The SCP is a main model for locomotive scheduling in rail transportation, where a given set of trains has to be covered by a minimum-cost set of locomotives that each train should be covered by at least one locomotive.
problems, therefore it is well-known for its numerous applications. Many algorithms have been developed to solve this problem. The literature covers exact, heuristic and metaheuristic approaches to solve the SCP. Exact algorithms are mostly based on brand-and-bound and branch-and-cut [3, 4]. In recent years some works are presented in this issue such as Avella et al. [5]. Björklund et al. [6] presented a column generation method that effectively exploits the structure of the formulations. The method can be used to find optimal or near-optimal schedules for networks with arbitrary topology and realistic size. They formulated the two problems using set covering formulations and they derived the column generation method. Hemamroa et al. [7] solved an assignment problem by an algorithm combining the column generation technique and a branch-and-cut scheme. Galinier and Hertz [8] proposed three exact algorithms for solving the large set covering problem. Two of them determine minimal covers, while the third one produces minimum covers. Heuristic versions of these algorithms are also proposed and analyzed. Some heuristic-based methods are used in the literature. Fisher and Rimmoo Kan [9] pointed that greedy methods are an important class of one-pass constructive heuristics for the SCP, used to rapidly generate a feasible solution after a single sweep through the problem data. Chvátal [10] proposed a widespread constructive heuristic for the SCP which is called Chvátal method. At each step, it examines the unselected columns and selects the one that reduces the total cost by the greatest amount in proportion to the number of rows covered by the column, until all rows have been covered. The Chvátal method has been extensively used to produce feasible solutions as a part of more advanced algorithms. Examples of such uses include: the primal-dual approach of Balas and Ho [11], the recursive variant of Avis [12], the approximation algorithms of Baker [13], and the six greedy approaches investigated by Vasko and Wilson [14, 15]. Ablanedo-Rosas and Rego [1] introduced a number of normalization rules and demonstrated the rules superiority to the classical Chvátal rule, especially when solving large scale and real-world instances. To challenge very large-scale SCP instances, arising from crew scheduling in the Italian railway, Caprara et al. [16] designed a Lagrangian based heuristic algorithm, named CFT, which is one of the most effective techniques for the general SCP. Ceria et al. [17] suggested a Lagrangian-based heuristic for solving large-scale set-covering problems arising from crew-scheduling at the Italian Railways. Umetani and Yagiura [18] compared different relaxation heuristics for the SCP. Yagiura et al. [19] proposed a 3-flip neighborhood local search which has the three characteristics. Nají-Azimi et al. [20] proposed a new heuristic algorithm to solve the SCP problem. The method is based on the electromagnetism metaheuristic approach which, after generating a pool of solutions to create the initial population, applies a fixed number of local search and movement iterations. Capra et al. [21] compared different exact and heuristic algorithms and provided a complete survey of the existing literature. The other type of solution method is metaheuristic used for the SCP. The metaheuristics for the SCP includes genetic algorithm [22], simulated annealing algorithm [23], tabu search algorithm [24], and ant colony optimization [25, 26, 27]. Indirect genetic algorithms and parallel genetic algorithms are two variants of the well-known genetic metaheuristic approach, proposed simultaneously by Aickelin [28], Solar et al. [29] for the SCP. The randomized priority search approach for general and the unicast SCP was proposed by Lan et al. [30] for both the. The unicast set covering problem is to determine the smallest possible subset of columns that also covers sets. If all costs associated with the columns set to 1, the general SCP problem will be converted to the unicast problem. By considering a candidate list, they construct an initial solution with a random selection between the best candidate and a member of the candidate list. A new metaheuristic approach called “randomized gravitational emulation search algorithm” for solving large size set covering problems has been designed by Raja Balachandar and Kannan [31].

In previous researches in the literature, the exact algorithm guarantees to find the optimal solution, but for large-scale problem, limited memory and computing time are two fundamental problems that lead them to become unusable. To cover this problem, most researchers use heuristic and hybrid algorithms to solve the optimization problem. According to the problem characteristics, solving the SCP problem with some algorithms are not efficient enough and the obtained solutions are poor.

In this paper for the local branching algorithm is developed for the SCP. The design of experiments (DOE) approach is used to adjust its parameters. The results are compared with the currently published method in the literature. The experimental results show the efficiency and effectiveness of the proposed algorithm.

The remainder of this paper is organized as follows. Section 2 represents the proposed local branching method. In Section 3, parameter tuning using DOE is described. In Sections 4 the experimental results of the algorithm are discussed. Conclusions are presented in Section 5.

2. The Proposed Local Branching Algorithm for the SCP

The local branching [32] is a heuristic technique that solves mixed-integer programming problems. Though the method is exact in nature, it becomes a
heuristic by redefining some control parameters. It has been designed to provide heuristic solutions of high quality, using an MIP solver. The proposed method is described based on the local branching algorithm for the SCP.

Let us consider a general 0–1 mixed-integer program

\[
(p) \min \mathbf{c}^T \mathbf{x}
\]

\[
s.t.: \mathbf{A} \mathbf{x} = \mathbf{b}
\]

\[
x_j \in \{0, 1\} \quad \forall j \in \beta \neq \emptyset
\]

\[
x_j \geq 0 \quad \forall j \in \delta
\]

where the set of variables is partitioned into (β, δ), being β the set of binary variables. Given a feasible solution \(\mathbf{x} \) of (P) and a positive integer parameter \(k \), the \(k \)-OPT neighborhood \(\mathcal{N}(\mathbf{x}, k) \) of \(\mathbf{x} \) is the set of feasible solutions of (P) satisfying the additional local branching constraint (constraint (4)).

\[
\Delta(x, \mathbf{x}) = \sum_{j \in \beta, x_j = 1} (1 - x_j) + \sum_{j \in \beta, x_j = 0} x_j \leq k
\]

In order to describe the constraint (4), the numerical example is applied: let us consider current \(\mathbf{x} \) as \(\mathbf{x} = (1,1,0,0) \). Then constraint (5), which is the local branching constraint, is constructed as following.

\[
\Delta(x, \mathbf{x}) = (1-x_1) + (1-x_2) + x_3 + x_4 \leq k
\]

Given the incumbent solution \(\mathbf{x} \), the solution space can be partitioned by constraint (6).

\[
\Delta(x, \mathbf{x}) \leq k \quad \text{(left branch)} \quad \text{or} \quad \Delta(x, \mathbf{x}) \geq k+1 \quad \text{(right branch)}
\]

The idea is that neighborhood \(\mathcal{N}(\mathbf{x}, k) \) of left branch should be sufficiently small to be optimized within a short computing time but still large enough to contain better solution. The value of parameter \(k \) should be justified in parameter tuning section. The whole method then alternates strategic phases where the additional local branching constraint are used to define promising solution regions, with tactical phases where these regions are explored through a classical branching scheme on the variables, using an MIP solver to do it.

The methodology is converted into a heuristic by adding several parameters. Two parameters are used to put a time limit to the total solving computation time and also to each left branch node solving computation time, respectively. The algorithm starts with a feasible solution \(\mathbf{x} \) of (P).

The left branching constraint \(\Delta(x, \mathbf{x}) \leq k \) is added to the model and creating a left branch sub-problem that is solved with an MIP solver. If a better solution \(\mathbf{x} \) is found, then it becomes the new incumbent. The process backtracks to the father node, the constraint \(\Delta(x, \mathbf{x}) \leq k \) is replaced by \(\Delta(x, \mathbf{x}) \geq k+1 \), and a new left branch node is created by adding the cut \(\Delta(x, \mathbf{x}) \leq k \) to the model.

If the solution \(\mathbf{x} \) is not improved within the node time limit, the size of the neighborhood \(\mathcal{N}(\mathbf{x}, k) \) (i.e., the right hand side of constraint (4)) is reduced. This can be considered an intensification step. A diversification mechanism acts when the MIP solver reports infeasibility or when it is unable to find a feasible solution.

The diversification consists of enlarging the neighborhood of the reference solution \(\mathbf{x} \), by increasing the right hand side of constraint (4).

Fig. 1. The pseudocode for local branching algorithm

The local branching algorithm pseudocode is shown in Figure 1. In this pseudocode, \(k \), maxDiv, nodeTimeLimit, totalTimeLimit, bestSoFar, and nodeObjective are neighborhood size, the maximum number of diversifications, time limit for each tactical branching exploration, overall time limit, best solution, and node objective value, respectively.

In the first part of this pseudocode, variables are initialized. The method consists of a main while loop which is iterated until either the total time limit or the maximum number of diversifications is exceeded. At each iteration, a MIP problem is solved that receives on input three parameters: the local time limit TL, the upper bound UB used to interrupt the optimization as soon the best lower bound becomes greater or equal to UB, and the binary parameter firstFeasible to be set to true for aborting the computation when the first
feasible solution is found. MIP solver returns on output the optimal/best solution along the final optimization. After that node status is checked by using Check node status method. diversify indicating whether the next required diversification or not.

Four different states may occur after each call to MIP solver:

1. **Optimal**: the current MIP has been solved to proven optimality. In this state, the last local branching constraint is reversed into \(\Delta(x, \bar{x}) \geq \text{rhs} + 1 \), the reference solution \(\bar{x} \) of value UB is updated, the rhs set to value of \(k \) and the algorithm is iterated.

2. **Infeasible**: the current MIP is proven to have no feasible solution of cost strictly less than UB, so the last local branching constraint is reversed into \(\Delta(x, \bar{x}) \geq \text{rhs} + 1 \). The rhs and diversify set to \(\text{rhs}+k/2 \) and true, respectively. A diversification is implemented depending on the current value of diversify. If diversify equals to true, TL and UB set to \(+\infty\) and the first feasible solution will be returned.

3. **Feasible**: a solution of cost strictly less than the upper bound UB has been found, but the MIP solver was not capable of proving its optimality for the current problem (due to the imposed time limit or to the requirement of aborting the execution after the first feasible solution is found).

In order to cut off the current reference solution \(\bar{x} \), the last local branching constraint \(\Delta(x, \bar{x}) \leq \text{rhs} \) is replaced by the constraint \(\Delta(x, \bar{x}) \geq 1 \) (unless this constraint has been already introduced at step 4, in which case the last local branching constraint is simply deleted). The reference solution \(\bar{x} \) of value UB is updated. The diversify variable set to false and value of \(k \) put into rhs variable.

4. **Unknown**: no feasible solution of cost strictly less than UB has been found within the node time limit, but there is no guarantee that such a solution does not exist. In this state if diversify equals to true the last local branching constraint \(\Delta(x, \bar{x}) \leq \text{rhs} \) is replaced by \(\Delta(x, \bar{x}) \geq 1 \) in order to escape from the current solution, and the upper bound UB and TL set to \(+\infty\) and \(\text{rhs}+k/2 \) the first feasible solution will be returned, else if diversify equals to false the constraint \(\Delta(x, \bar{x}) \leq \text{rhs} \) is deleted and \(\text{rhs} = \text{rhs}+k/2 \) [32].

3. Parameter Tuning using DOE Approach

In this section, selecting problems and parameters tuning of the local branching algorithm are discussed. The parameters of the proposed algorithm are tuned using Design of Experiments (DOE) approach and Design Expert software.

An experiment can be described as series of tests in which purposeful changes are made to the input variables of a system so that we may observe and identify the reasons for changes in the output response. DOE refers to the process of planning the experiment so that appropriate data that can be analyzed by statistical methods will be collected, resulting in valid and objective conclusions.

The three basic principles of DOE are replication, randomization, and blocking. By replication, we mean a repetition of the basic experiment. Two important properties of replication are it allows the experimenter to obtain an estimate of the experimental error and if the sample mean is used to estimate the effect of a factor in the experiment, permits the experimenter to obtain a more precise estimate of this effect. Randomization is that both the allocation of the experimental material and the order in which the individual runs or trials of the experiment are to be performed are randomly determined and makes this assumption valid.

Blocking is a design technique used to improve the precision with which comparisons among the factors of interest are made. Often blocking is used to reduce or eliminate the variability transmitted from nuisance factors [33].

The important parameters in DOE approach are response variable, factor, level, treatment and effect. The response variable is the measured variable of the response variables. The various values at which the factor is set are known as its levels. In metaheuristic performance analysis, the factors include both the metaheuristic tuning parameters and the most important problem characteristics.

A treatment is a specific combination of factor levels. The particular treatments will depend on the particular experiment design and on the ranges over which factors are varied. An effect is a change in the response variable due to a change in one or more factors. Design of experiments is a tool that can be used to determine important parameters and interactions between them.

Four stages of DOE consist of screening and diagnosis of important factors, modeling, optimization and assessment. This methodology is called sequential experimentation which is used to set the parameters in the DOE approach and is used in this paper for local branching algorithm [35].

Experiments are conducted on eight problems with different sizes. In the local branching algorithm, solution quality and CPU time are considered as the response variables.

Factors, levels, and the final parameters for solving problems are shown in Table 1. These parameters are fixed to solve the test instances.
4. Experimental Results

The local branching algorithm is tested on a set of 87 set covering problems available from the OR Library. There are fourteen sets of benchmark instances called sets 4, 5, 6, A, B, C, D, E, NRE, NRF, NRG, NRH, CLR, CYC and RAIL. Each of sets 4 and 5 has 10 instances, each of sets 6, A to E, and NRE to NRH has five instances, set CLR has four instances, set CYC has six instances and RAIL has seven instances. The characteristics of these instances such as name, number of rows, number of columns, density (the percentage of nonzero entries in the SCP matrix), and cost range are given in Table 2.

<table>
<thead>
<tr>
<th>Instance</th>
<th>No. of Rows</th>
<th>No. of Columns</th>
<th>Density (%)</th>
<th>Cost Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 4</td>
<td>200</td>
<td>1000</td>
<td>2</td>
<td>[1, 100]</td>
</tr>
<tr>
<td>Set 5</td>
<td>200</td>
<td>1000</td>
<td>2</td>
<td>[1, 100]</td>
</tr>
<tr>
<td>Set 6</td>
<td>200</td>
<td>1000</td>
<td>5</td>
<td>[1, 100]</td>
</tr>
<tr>
<td>Set A</td>
<td>300</td>
<td>3000</td>
<td>5</td>
<td>[1, 100]</td>
</tr>
<tr>
<td>Set B</td>
<td>300</td>
<td>3000</td>
<td>5</td>
<td>[1, 100]</td>
</tr>
<tr>
<td>Set C</td>
<td>400</td>
<td>4000</td>
<td>2</td>
<td>[1, 100]</td>
</tr>
<tr>
<td>Set D</td>
<td>400</td>
<td>4000</td>
<td>5</td>
<td>[1, 100]</td>
</tr>
<tr>
<td>E.1</td>
<td>560</td>
<td>500</td>
<td>20</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>E.2</td>
<td>430</td>
<td>500</td>
<td>20</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>E.3</td>
<td>50</td>
<td>50</td>
<td>20</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>E.4</td>
<td>50</td>
<td>50</td>
<td>20</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>E.5</td>
<td>514</td>
<td>500</td>
<td>20</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>Set NRE</td>
<td>500</td>
<td>5000</td>
<td>10</td>
<td>[1, 100]</td>
</tr>
<tr>
<td>Set NRF</td>
<td>500</td>
<td>5000</td>
<td>20</td>
<td>[1, 100]</td>
</tr>
<tr>
<td>Set NRG</td>
<td>1000</td>
<td>10000</td>
<td>2</td>
<td>[1, 100]</td>
</tr>
<tr>
<td>Set NRH</td>
<td>1000</td>
<td>10000</td>
<td>5</td>
<td>[1, 100]</td>
</tr>
<tr>
<td>CLR.10</td>
<td>511</td>
<td>210</td>
<td>12</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>CLR.11</td>
<td>1023</td>
<td>330</td>
<td>12</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>CLR.12</td>
<td>2047</td>
<td>495</td>
<td>12</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>CLR.13</td>
<td>4095</td>
<td>715</td>
<td>12</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>CYC.06</td>
<td>240</td>
<td>192</td>
<td>2</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>CYC.07</td>
<td>672</td>
<td>405</td>
<td>0.8</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>CYC.08</td>
<td>1792</td>
<td>1024</td>
<td>0.39</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>CYC.09</td>
<td>4608</td>
<td>2304</td>
<td>0.17</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>CYC.10</td>
<td>11520</td>
<td>5120</td>
<td>0.07</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>CYC.11</td>
<td>28160</td>
<td>11264</td>
<td>0.03</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>Rail 507</td>
<td>507</td>
<td>63009</td>
<td>1.3</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>Rail 516</td>
<td>516</td>
<td>47311</td>
<td>1.3</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>Rail 582</td>
<td>582</td>
<td>55515</td>
<td>1.2</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>Rail 2536</td>
<td>2536</td>
<td>1081841</td>
<td>0.4</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>Rail 2586</td>
<td>2586</td>
<td>920683</td>
<td>0.34</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>Rail 4284</td>
<td>4284</td>
<td>1092610</td>
<td>0.24</td>
<td>[1, 1]</td>
</tr>
</tbody>
</table>

To evaluate the performance of the hybrid algorithm, the proposed algorithm is compared with the best solution found in the literature in Table 3. The surrogate constraint normalization rules [1], 3-flip neighborhood local search [19], and Lagrangian-based heuristic [17] are selected to compare with the proposed local branching algorithm. The Java programming language and CPLEX 11 software as an MIP solver are used to implement the proposed algorithm. The program was run on a personal computer with core 2 CPU at 2.66 GHz, 4 GBs of RAM, and operating under Microsoft Windows Vista. The PROB columns indicate the name of the instances. Column SCNR stands for surrogate constraint normalization rules, 3-Flip NB column refers to the 3-flip neighborhood local search and L-Heristic corresponds to the Lagrangian-based heuristic method. Obj. Value in LOCB columns refer to the solution found by our proposed local branching algorithm and the CPU Time column indicates the execution time for finding the solution in seconds. The best solution that achieved by the selected methods is bolded. IMPROVE column displays the improvement percentage of the proposed algorithm relative to the best solution. As a solution quality, for each test problem the percentage of improvement from the best solution is calculated by Equation (7).

\[
\text{IMPROVE} = \frac{\text{Obtained solution} - \text{Best solution}}{\text{Best solution}} \times 100 \quad (7)
\]
5. Conclusions

This paper presented the local branching algorithm for solving the set covering problem. The validity and efficiency of the proposed method are put into test over a series of computational experiments on fourteen sets of standard test problems. To adjust the best parameter values in the proposed algorithm, design of experiments method is used to find the most appropriate parameters. The experimental results show the efficiency and effectiveness of the proposed algorithm. The average percentage of improvement for the proposed algorithm in compare with the best solution in the literature is -0.66 percent. The outcome is the local branching method clearly outperforms other heuristics in the literature, finding the best solution until now for most of the instances with a reasonable computational effort. These results are very encouraging, and suggest that combining mathematical programming and metaheuristic techniques is a worth pursuing research direction. The application of this formulation and solution method in real problems as a case study is suggested for future researches.

References

In Lagrangian-based heuristic the standard problem are categorized and the fixed time limit is set for each category. For the small problems, time limit is set in 3000 seconds and for the medium and large problems, time limit is set in 10,000 seconds. In 3-flip neighborhood local search, Time limits of the algorithms set to 180 seconds for types E–H, 600 seconds for RAIL, 507, 516 and 582, and 18,000 s for RAIL.

The average of IMPROVE column for the proposed local branching algorithm is -0.66 percent. The results show the efficiency and effectiveness of the proposed algorithm. Figure 2 shows the best objective value of the local branching algorithm in each branching node for CYC.09 problem.

<table>
<thead>
<tr>
<th>PROB</th>
<th>SCNR</th>
<th>S3-Hp</th>
<th>N.</th>
<th>IMPROVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1</td>
<td>69</td>
<td>60</td>
<td>N.A.</td>
<td>60</td>
</tr>
<tr>
<td>D.2</td>
<td>71</td>
<td>66</td>
<td>N.A.</td>
<td>66</td>
</tr>
<tr>
<td>D.3</td>
<td>81</td>
<td>72</td>
<td>N.A.</td>
<td>72</td>
</tr>
<tr>
<td>D.4</td>
<td>67</td>
<td>62</td>
<td>N.A.</td>
<td>62</td>
</tr>
<tr>
<td>D.5</td>
<td>70</td>
<td>61</td>
<td>N.A.</td>
<td>61</td>
</tr>
<tr>
<td>E.1</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>E.2</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>E.3</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>E.4</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>E.5</td>
<td>5</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Fig. 2. Convergence of LOCB best objective value for CYC.09

International Journal of Industrial Engineering & Production Research, June 2014, Vol. 25, No. 2

