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Abstract: The effect of a bond failure and its extent is studied on stress concentration 
in long fibers as well as stress distribution in short fibers and their surrounding 
matrix bays. The material is assumed to be a finite width hybrid composite lamina 
which is subjected to a tensile load of magnitude "P" at infinity. The surrounding 
matrix is assumed to take only shear (shear-lag theory). The bay adjacent to the first 
intact filament is allowed to experience a bond failure of size 2δ. This failure is due 
to excessive shear load in the matrix which exceeds the fiber-matrix bond strength. 
The matrix at this zone may or may not experience yielding. The short fibers are 
simulated by assuming two successive breaks along each filament. The effect of bond 
failure length on short fiber load bearing capability, as well as stress concentration 
in the first intact filament is fully investigated. The effect of hybridization, in presence 
of bond failure is also examined on short fiber load bearing behavior. 
 
Keywords:  Hybrid, Short fiber load, Matrix bond failure, Stress concentration. 

 
1. Introduction1 

Structures fabricated from fine filaments of various 
types have found many industrial applications. One of 
the necessary factors in rational design of such 
structures is a vast knowledge of stress behavior in the 
vicinity of any local discontinuity which may be present 
in form of a hole, crack, fiber-matrix bond failure, and 
so on. Composites that are composed of more than one 
filament are called hybrids.  
This arrangement of fibers is due to a need for any 
improvement in a deficiency present in a single type 
fiber composite.  
In general, the use of the second type fiber could be to 
improve the weight of the overall structure, its 
mechanical property, or a reduction in cost of 
production.  Since the presence of the second type fiber 
influences the stress distribution within the material, 
then, knowledge of this behavior will enable one to use 
these materials efficiently.  
Many attempts have been made to better understand any 
stress field variation caused from the presence of local 
defects. To accomplish this task the material has to be 
modeled properly. One of the models available is based 
on shear lag theory, where in, all fibers are assumed to 
take axial load and the matrix sustains only shear.  
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The load transfer mechanism from any broken fiber to 
its adjacent filament is through shear stress in the 
matrix. 
It is shown that [1]–[4] shear-lag model gives relatively 
accurate results on normal stresses developed in 
composites with a low extensional stiffness in the 
matrix.  
The effect of inter-fiber spacing and matrix crack on 
stress concentration factor has also been examined by 
Sirivedin S. et. al,  in reference [5]. The effect of fiber 
cross sectional shape on mechanical behavior was 
further discussed by Bond Ian et al [6].  
Several authors have also studied the stress distribution 
and fracture behavior of hybrid composites [7]–[10]. 
Stress- strain behavior in initial stage of short fiber 
reinforced metal matrix composites was studied by Ding 
and his co-authors [11]. In references [11]-[15], short 
fiber reinforced composites were studied to determine 
the effect of fiber volume fraction and its length on 
tensile properties as well as stress distribution in overall 
material. Most of the research on composites with 
matrix plasticity has focused on materials with single 
type filament [16] –[18]. Several authors have tried to 
investigate bond failure strength on overall behavior of 
different type composites through experiments and 
analytical solutions and modeling [19]–[25]. Due to the 
complexity of stress distribution in short fiber 
composites, stress distribution in these materials have 
still many unresolved questions which yet have to be 
answered. In this paper, a try is made to understand the 
effect of bond failure and its extent on any stress 
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concentration produced within a single type fiber and a 
hybrid composite lamina.  
Also, stress distribution within any short fiber and the 
effect of debonded fiber-matrix interface on short fiber 
load bearing capability is fully investigated. 
 

2. Derivation of Formulas 
To obtain the necessary relations, a finite width 
composite lamina with N=2q+1 fibers is considered as 
shown in Figure 1.  

It is assumed that all the fibers are aligned in parallel, 
and the spacing between them, namely "h", is equal to 
the fiber's diameter "d". Furthermore, it is assumed 
that all fibers will only take extensional load, and the 
matrix sustains only shear. This is a good assumption 
for most composites with a phenolic resin or weak in 
tension. 

 

 
Fig 1. Fiber arrangement in a hybrid lamina with double cuts and broken bond zones of size 2δ. 

 
 
The high modulus fibers (HM), as well as the low 
modulus fibers (LM), are assumed to have the same 
diameter and act as linear elastic materials up to the 
point of fracture. Two successive breaks are considered 
along each filament to simulate a short fiber. A perfect 
bond is assumed to exist between all fibers and matrix 
bays except those bonding the crack tip. In this region, 
there is a bond failure of size 2δ between the fibers 
bonding the crack tip and their neighboring matrix bay. 
This failure may exist due to the presence of excessive 
shear stress developed within the matrix. The stress in 
this zone may (or may not) have reached its limiting 
yield value. The lamina is subjected to a tensile load of 
magnitude P applied at infinity. Due to symmetry, only 
the right portion of the lamina is considered. To obtain 
field equations, the right portion of the lamina is divided 
into four regions (see Figure 2). In regions one and four 
there is a perfect bond between matrix and fibers while 
in regions two and three, a bond failure zone of size 2δ 
exists between the fibers and matrix bays bonding the 
crack tips. The matrix in this zone may or may not be 
assumed to be yielded. Two successive breaks are 
assumed along broken fibers to simulate a short fiber.  
In all equations, an asterisk is used to distinguish those 
properties associated with LM fibers. Equilibrium 
equations in each region may be written by considering a 
volume element containing two successive fibers (one 
HM and one LM fiber), and their surrounded matrix bay 
as shown in Figure 3. 

 
Fig 2. Fiber arrangements for the right hand portion of 

the lamina. 
 
The displacement of each fiber in regions one and four 
is shown by u  where for regions two and three 
parameter u is used instead. Application of force 
equilibrium equation along x on the mth volume 
element in regions one and four reveals that; 
 

 
Fig 3. Force equilibrium on the mth volume element 

with intact matrix. 
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According to Figure 4, in regions two and three, for 
those fibers located at the crack tips, the equilibrium 
equation of fibers reduce into: 
 
 

 
Fig 4. Force equilibrium on the mth volume element 

at the crack tip in a zone with debonded matrix. 
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For other fibers and matrix bays surrounded in regions 
two and three the equilibrium equations may be 
expressed as; 
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Assuming the lamina ends in a HM fiber at the edge, 
then the equilibrium equations for the edge fibers in 
regions one  
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And for regions two and three; 
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For simplicity, equilibrium equations (2.1) through 
(2.10) are written in a non-dimensional form as 
follows.  
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Similar expressions to those of (2.17) through (2.20) 
may be written if the edges end in a LM fiber.  
In above equations, it has been assumed that a LM 
fiber bonds the crack tip and the breaks are symmetric 
with respect to n = 0 fiber. Similar expressions may be 
written if a HM fiber bonds the crack tip. 
 

3. Displacement and Load Distribution  
Fields 

(a). Regions 1 and 4 
In these two regions, equations (2.11) through (2.14) 
may be written in a matrix notation as: 
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(3.1)                             " 0ULUL 21 =−

 
Where L1 and L2 are coefficient matrices and U" 
corresponds to the second derivative of U with respect 
to ξ. Hence, the solution to the differential-difference 
equation (3.1) may be written as follows. 

 
(a.1). Region 1 
As observed in Figure 2, this region is confined in 
region )(0 δξξ −≤≤ D . All eigenvalues associated with 
this region are distinct. Hence, due to finiteness of this 
length, the solution to equations (3.1) may be written in 
terms of eigenvalues λι and eigenvectors R (i) as; 
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In above equations,  is a value associated with 
the  (q-n+1)th row of the ith eigenvector. The superscript 
(1) corresponds to properties associated with region 1.  
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)1(

i
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(a.2). Region 4 
This region is defined between the limits ∞≤≤+ ξδξ )( D . 
All the eigenvalues associated with this region are 
distinct. Hence due to the boundness condition defined 
in equation (3.5), the solution to equations (3.1) may be 
written in terms of expressions (3.6) to (3.8). 
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In Equations (3.6)-(3.8), positive values of iλ  are 
discarded due to the boundness conditions expressed in 
(3.5). In equations (3.2) - (3.8), Ai, Bi, and Ni, are 
constants yet to be defined from boundary and 
continuity conditions and superscript (4) corresponds 

to properties associated with region 4. One must realize 
that the non-dimensional load in each fiber is expressed 
as: 
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(b). Regions 2 and 3 
In these two regions, equations (2.15) through (2.20) 
may be written in a matrix notation as: 
 

"
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L1 and L3 are coefficient matrices. The solution for 
load and displacement in each region may be written 
as; 
 
(b-1). Region 2 
The field equations associated with this region may be 
written as: 
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In above equations, k is the number of occurrence of an 
eigenvalue. These equations may be re-written as: 
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(b-2). Region 3 
In this region, the expressions for displacements and 
loads in each fiber may be expressed as: 
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In above equations, k is the number of occurrence of an 
eigenvalue. The above equations may be re-written as: 
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In equations (3.11) to (3.16), Ci, Di, Ei, and Mi are 
constants yet to be defined from boundary conditions 
and continuity equations. 
 

4. Boundary Conditions and Continuity  
Equations 

Upon the application of following boundary conditions 
and continuity equations, one may solve for the 
constants introduced in displacement fields of regions 1 
to 4. 
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Applying above boundary conditions and continuity 
equations one can solve for 3n unknowns present in 
equilibrium equations. 

 
5. Results and Discussion 

In order to investigate the effect of bond failure on 
stress distribution in a finite width regular composite 
lamina, it was first assumed that all fibers are of the 
same type (R=1), and each damaged filament bears two 
successive cuts along its length such that the portion of 
fiber caught in between forms a short fiber (see Figure 
1). Figure 5 shows the effect of bond failure length on 
stress concentration in the first intact filament bonding 
the crack tip. The results of an infinite sheet with no 
bond failure are superimposed for further comparison.  
As realized, for ξο=2, an increase in length of the 
debonded region reduces the peak normal stress 
concentration in the filament. The reduction appears to 
be more pronounced for larger cracks (higher values of 
"r"). According to Figure 6, for any specific value of 
crack size (here r = 3), the magnitude of stress 
concentration is barely a function of 2ξο(the distance 
between any two successive cuts). An increase in ξο 
would result in higher values of Kr, maximum of which 
happens to be in the first intact filament bonding the 
crack tip. As δincreases from zero to 0.4, the 
percentage decrease in Kr appears to be almost the 
same ( ≈ 12%) for all values of ξο. The effect of 
hybridization on peak stress concentration is studied in 
Figure 7 for R = 0.33. This value simulates the boron-
graphite epoxy hybrid composite. Two values of 
δ = 0.1 and δ = 0.3 are selected for the half length of 
debonded region. For further comparison, the results of 
an infinite sheet with R=1 and no bond failure are 
superimposed.  
The first intact filament at the crack tip happens to be a 
LM fiber. According to this figure, hybridization causes 
LM fibers to experience higher values of stresses 
compared to a case where all fibers are of the same 
type. The initiation of a bond failure at the fiber-matrix 
interface causes a reduction in Kr. The effect is more 
pronounced for higher values of crack size (larger 
number of broken fibers). As δ increases from zero (no 
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bond failure) to 0.3, the magnitude of stress 
concentration reduces from 2.94 to 2.25 (at r = 5).  
This corresponds to a reduction of 23.5% in Kr. Similar 
study on HM fibers is shown in Figure 8. According to 
this figure, a HM fiber experiences smaller value of 
stresses, once the lamina is hybridized. As a bond 
failure occurs and grows in size, the values of Kr are 
further decreased. This reduction is about 9% at r = 7 
(values of Kr is reduced from 2 to 1.88). Hence, from 
the results in Figures 7 and 8, one can conclude that the 
effect of bond failure seems to be more pronounced on 
LM fiber stresses. Figure 9 compares the results of Kr 
for three different cases indicated on the figure. The 
values of stress concentration for the yielded matrix 
were deduced from reference [18] wherein it was 
assumed that the yielded zone has the same size as the 
debonded region and the matrix bay at the crack tip has 
kept its grip with its neighboring fibers.  
According to this figure, a yielded matrix causes a 
higher stress reduction in intact filaments compared to a 
debonded region of the same size. For example, at r = 
7, a yielded zone size of 0.4 forces the values of Kr to 
be lowered from 2.45 (for no bond failure) to 1.89, 
while, if the fiber-matrix interface at the crack tip is 
debonded up to the same size, this value is only 
reduced to 2.1. The effect of δ on peak normal loads in 
the first short fiber adjacent to the crack tip is shown in 
Figure 10. According to the results, for values of 
δ << ξοthe effect of the debonded region on (Ps)max 
becomes negligible.  
According to this figure, for ξο=2, the growth of δ from 
zero (no bond failure) to 0.5, causes a 28.8% in (Ps)max 
while this decrease is about 3% at ξο = 7.  
As the lamina is hybridized, the LM short fibers 
experience more loads (compared to a single type 
composite lamina) as "R" is reduced from 1 to 0.33. 
This is shown in Figure 11 for δ = 0.3. Similar analysis 
on peak shear stress in the matrix bay bonding the crack 
tip is performed and shown in Figures 12 and 13. 
According to Figure 12, an increase in δ, lowers the 
value of peak shear stress. This effect seems to be 
larger for smaller values of ξο. For further comparison, 
the results of no bond failure are superimposed. 
According to Figure 13, assuming a HM fiber at the 
crack tip, an increase in "R", lowers the value of peak 
shear stress in the matrix. The reduction appears to be 
25.8% for δ = 0.3 at ξο=2.7, as R is reduced from 1 to 
0.33. 

 
6. Conclusions 

This paper presents the effect of a bond failure between 
a matrix and its neighboring fibers, and its extent, on 
peak stress concentration, load bearing capability and 
peak shear stress in a regular and hybrid composite 
lamina. According to the results, the growth of a bond 
failure noticeably lowers the magnitude of stress 
concentration in the fibers. This effect seems to be the 
same for all values of ξο.  

Hybridization effect causes LM fibers to experience 
more stress, while the presence of a bond failure lowers 
this effect considerably. As the lamina is hybridized, 
HM fibers undergo lower stress values while initiation 
and growth of a bond failure lower these values even 
more. The effect of stress reduction as a result of a 
bond failure appears to be less in HM fibers. According 
to the results, a fiber-matrix bond failure lowers the 
values of stress concentrations less compared to a case 
where the matrix has yielded to the same extent as the 
size of the debonded zone, but has kept its grip with its 
neighboring fibers. For values of δ much smaller than 
ξο, the growth of the debonded region has a negligible 
effect on load bearing capability of short fibers. 
Hybridization does not seem to alter this behavior 
much. The growth of a debonded interface also affects 
the peak shear stress produced in the matrix. The trend 
appears to be similar to that described for load bearing 
capability of short fibers. 
 

Nomenclature 
Af : Cross sectional areas of HM fibers. 

*
Af : Cross sectional areas of LM fibers. 

 d:    Fiber diameter, fiber spacing. 
Ef : Elastic Modulus of HM fibers.  

Ef
* Elastic Modulus of LM fibers. 

G:    Shear modulus of the matrix. 
h:     Thickness of the lamina. 
Kr : Stress concentration factor in each fiber 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

p
p n

rK
. 

m:  Volume element containing one HM and one 
LM fiber. 

n:     Filament number. 
N:    Total number of fibers (N=2q+1). 
p:   Normal Load applied to the lamina at infinity. 

n
P: 
p : 

Local normal load in each fiber 

Non-dimensional load in HM Fibers. 
P*: Non dimensional load in LM Fibers. 
Ps : Non-dimensional load in short Fibers. 
R :  Extensional stiffness ratio of  LM fibers to 

HM fibers 
r: Total number of broken fibers. 
(Sxy): Non-dimensional shear stress in each matrix 

bay. 
u(i) : Displacement of fibers in regions one and two 

(i = 1,2).  
)( ju : Displacement of fibers in regions two and 

three (j = 2,3). 
U(i) : Non-dimensional displacement of fibers in 

regions one and two (i =1,2).  
)(

U
j

: Non-dimensional displacement of fibers in 
regions two and three           (j = 2,3). 

x,y : Coordinate system centered in the middle of 
the lamina. 

2δ :  Non dimensional size of the debonded region. 
λi  :     Eigenvalue. 
ξ   : Non dimensional coordinate along each 

filament. 
2ξο   :  Total length of each short fiber. 
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Fig 5. Effect of bond failure extent on stress concentration factors for various numbers of broken fibers 

 
Fig 6. Effect of short fiber length on peak stress concentration produced in the lamina. 

 
Fig 7. The effect of bond failure extent on stress concentration factor in LM fibers. 
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Fig 8. The effect of bond failure extent on stress concentration factor in LM fibers. 

 
Fig 9. Comparison of stress concentration reduction due to yielded zone and debonded  

region in the matrix.   

 
Fig 10. Variation of peak normal load in short fibers. 
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Fig 11. The effect of "R" on short fiber load distribution in presence of a demoded matrix zone of  0.3. 

 

 
 

Fig 12. Variation of peak shear stress in the matrix as a function of short fiber length. 

 
Fig 13. The effect of "R" on shear stress distribution in the matrix bay the crack tip with  

a debonded region of  size 0.3.  

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
16

 ]
 

                             9 / 11

https://ijiepr.iust.ac.ir/article-1-29-en.html


56               The Effect of Matrix Bond Failure on Stress Distribution in Short and Long Fibers of a Hybrid Composite Lamina 

 
 

References 
[1] Hedgepeth, J.M., "Stress concentrations in 

filamentary structures", NASA-TND 882, May 
1961. 

 
[2] Reedy, E.D., "Fiber stresses in cracked monolayer: 

comparison of shear-lag and 3-D finite element 
predictions", Journal of Composite Materials, Vol. 
18, 1984. 

 
[3] Gao, X.L., &. Li, K., "Shear-lag model for carbon 

nan tube-reinforced polymer composites', 
International Journal of Solids and Structures, Vol. 
42, Issues 5-6, 2005. 

 
[4] Xia, Z., Okabe, T., & Curtin W.A., "Shear-lag 

versus finite element models for stress transfer in 
fiber-reinforced composites", Composite Science 
and Technology, 62, 2002.  

 
[5] Sirivedin, S., Fenner, D.N., Nath, R.B., & Galiotis, 

C., "Effects of inter-fiber spacing and matrix 
cracks on stress amplification factors in carbon-
fiber/epoxy matrix composites. Part I: planar array 
of fibers", Journal of Composites, Part A: Applied 
Science and Manufacturing, Vol. 34, 2003. 

 
[6] Bond, Ian., Hucker, M., Weaver, P., Bleay, St., & 

Haq, S., "Mechanical behavior of circular and 
triangular glass fibers and their composites", 
Journal of Composites Science and Technology, 
Vol. 62, 2002. 

 
[7] Fukuda, H., and Chou, T.W., "Stiffness and strength 

of hybrid composites", Proc. Japan -US 
Conference, Tokyo, 1980. 

 
[8] Fukuda, H., & Chou, T.W., "Stress concentration in 

hybrid composite sheet", Journal of Applied 
Mechanics, Vol. 50, Dec 1983. 

 
[9] Dhararani, L.R., & Goree, J.G., "Analysis of a 

hybrid uni-directional laminate with damage", 
Mechanics of Composite Materials, Recent 
Advances, Pergamon Press, 1982.  

 
[10] Dlouhy, I., Chlup, Z., Boccaccini, D.N., Atiq, S., 

& Boccaccini, A.R., "Fracture behavior of hybrid 
glass matrix composites: thermal ageing effects", 
Journal of Composites, Part A: Applied Science 
and Manufacturing, Vol. 34, 2003. 

 
[11] Ding, X.D., Jiang, Z.H., Sun, J., Lian, J.s., & Xiao, 

L., "Stress-strain behavior in initial yield stage of 
short fiber reinforced metal matrix composite", 
Journal of Composites Science and Technology, 
Vol. 62, 2002. 

[12] Fukuda, H., & Kawata, K., "Stress and strain 
fields in short fiber reinforced composites", Fiber 
Science and Technology, Vol. 7, 1974. 

 
[13] Fu, S.Y., Lauke, B., Mäder, E., Yue, C.Y., & Hu, 

X., "Tensile properties of short-glass-fiber and 
short-carbon- fiber reinforced polypropylene 
composites", Journal of Composites, Part A: 
Applied Science and Manufacturing, Vol. 31, 
2000. 

 
[14] Shishesaz, M., "The effect of mechanical and 

physical properties of polymers on stress 
amplification factor in composites with an internal 
damage", Iranian Polymer Journal, Vol. 14, No. 5, 
Issue 59, 2005. 

 
[15] Koss, D.A., Petrich, R.R., Kallas, M.N. & 

Hellmann, J.R. "Interfacial shear and matrix 
plasticity during fiber push-out in a metal-matrix 
composite", Composites Science and Technology, 
Vol. 51, Issue 1, 1994. 

 
[16] Kang, G., & Gao, Q., "Tensile properties of 

randomly oriented short δ-Al2O3 fiber reinforced 
aluminum alloy composites: II Finite element 
analysis for stress transfer, elastic modules and 
stress-strain curve", Journal of Composites, part A 
33, 2002. 

 
[17] Miserez, A., Rossoll, A., & Mortensen, A., 

"Investigation of crack-tip plasticity in high vol. 
fraction particulate metal matrix composites", 
Engineering Fracture Mechanics, In Press, 2004. 

 
[18] Shishesaz, M., "The effect of matrix plasticity and 

duplicate cuts on stress distribution in short and 
long fibers of a hybrid composite lamina (Perfect 
bond model)", Iranian journal of Science and 
Technology, Transaction B, Engineering Vol. 31, 
2007, PP. 81-94. 

 
[19] Owen, D.R.J., & Lyness, J.F., "Investigation of 

bond failure in fiber-reinforced materials by the 
finite element method", Fiber Science and 
Technology, Vol. 5, Issue 2, April 1972. 

 
[20] Hoecker, F., Friedrich, K., Blumberg, H., & 

Karger-Kocsis, J., "Effects of fiber/matrix adhesion 
on off-axis mechanical response in carbon-
fiber/epoxy resin composites", Composites Science 
and Technology Vol. 54, Issue 3, 1995. 

 
[21] Zhandarov, S.F., & Pisanova, E.V., "The local 

bond strength and its determination by 
fragmentation and pull-out tests", Composites 
Science and Technology, Vol. 57, Issue 8, 1997. 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
16

 ]
 

                            10 / 11

http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=11554&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=96e7749f6f665e53151a55417b93cb4f
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=11554&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=96e7749f6f665e53151a55417b93cb4f
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%2311554%231972%23999949997%23389094%23FLP%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=f172900ede302db9f643ff630e9d1281
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5571&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=4fceabe2dc958dca20815b7b36308e5c
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5571&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=4fceabe2dc958dca20815b7b36308e5c
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235571%231995%23999459996%23181427%23FLP%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3a1fda974297990c90863bddda51f788
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5571&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=4fceabe2dc958dca20815b7b36308e5c
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5571&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=4fceabe2dc958dca20815b7b36308e5c
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235571%231997%23999429991%2310074%23FLP%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=35a252ff1bc976103a5309516e0f8576
https://ijiepr.iust.ac.ir/article-1-29-en.html


Mohammad Shishehsaz                                                                                                                                                                         57 

 
[22] Harwell, M.G., Hirt, D.E., Edie, D.D., Popovska, 

N. & Emig, G., "Investigation of bond strength and 
failure mode between SiC-coated mesophase 
ribbon fiber and an epoxy matrix", Carbon, Vol. 
38, Issue 8, 2000. 

 
[23] Lin, G., Geubelle, P.H., & Sottos, N.R., 

"Simulation of fiber decoding with friction in a 
model composite push out test", International 
Journal of Solids and Structures, Vol. 38, Issues 
46-47, November 2001. 

[24] Vlasveld, D.P.N., Parlevliet, P.P., Bersee, H.E.N., 
& Picken, S.J., "Fiber – matrix adhesion in glass-
fiber reinforced polyamide - 6 silicate Nan 
composites", Composites Part A: Applied Science 
and Manufacturing, Vol. 36, Issue 1, 2005. 

 
[25] Zhandarov, S., & Mäder, E., "Characterization of 

fiber/matrix interface strength: applicability of 
different tests, approaches and parameters", 
Composites Science and Technology, Vol., 65, 
Issue 1, 2005. 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ie
pr

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
16

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            11 / 11

http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5560&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=9d64ccf99b547810e1395c0c337bf511
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235560%232000%23999619991%23194551%23FLA%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=ec2593d8f905d1ba7926bb056644910a
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235560%232000%23999619991%23194551%23FLA%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=ec2593d8f905d1ba7926bb056644910a
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=6102&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13dff63cddcdb41c90b4170f34ac2f9c
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=6102&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=13dff63cddcdb41c90b4170f34ac2f9c
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%236102%232001%23999619953%23269851%23FLA%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=08d6cadabb85e1d90f252e9ed774b6c7
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%236102%232001%23999619953%23269851%23FLA%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=08d6cadabb85e1d90f252e9ed774b6c7
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5567&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=42445e7fb61a000a5d1d6a6e27f89e37
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5567&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=42445e7fb61a000a5d1d6a6e27f89e37
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235567%232005%23999639998%23523958%23FLA%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3e6a3b6aee3ed28b963df0ad8f6ad9fa
http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=5571&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=4fceabe2dc958dca20815b7b36308e5c
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235571%232005%23999349998%23526181%23FLA%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=a04416cc3d59386dca22c0ed3d691a81
http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235571%232005%23999349998%23526181%23FLA%23&_auth=y&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=a04416cc3d59386dca22c0ed3d691a81
https://ijiepr.iust.ac.ir/article-1-29-en.html
http://www.tcpdf.org

