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Abstract: The meshless local Petrov-Galerkin method with unity as the weighting 
function has been applied to the solution of the Navier-Stokes and energy 
equations. The Navier-Stokes equations in terms of the stream function and 
vorticity formulation together with the energy equation are solved for a driven 
cavity flow for moderate Reynolds numbers using different point distributions. The 
L2-norm of the error as a function of the size of the control volumes is presented for 
different cases; and the rate of convergence of the method is established. The 
results of this study show that the proposed method is applicable in solving a 
variety of non-isothermal fluid flow problems. 
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1. Introduction1 

Various meshless schemes have been introduced in 
recent years in order to circumvent the difficulties 
associated with mesh generation in the well-established 
numerical techniques, such as the finite element and the 
finite volume methods [1, 2]. Among the earliest so-
called meshless techniques is “the diffuse element 
method” proposed by Nayroles et al. in which a 
collection of nodes and a boundary description are 
sufficient to obtain the Galerkin equations [3]. However, 
in this method, an auxiliary grid is still required to 
evaluate the integrals which result from applying the 
Galerkin method to the differential equations. 
Subsequently, via introducing a regular cell structure as 
the auxiliary grid, Belytschko et al. and Lu et al. 
transformed the above technique to the so-called 
element-free Galerkin method [4, 5].  
In recent years, two other meshless technique – the 
meshless local boundary equation method, and the 
meshless local Petrov-Galerkin method (MLPG) – have 
been proposed by Zhu et al. and Atluri et al., respectively 
[6,7]. In these schemes, a local weak form of the 
differential equation over a local subdomain together 
with the shape function from moving least-squares 
interpolations are used to obtain the discretized 
equations. A recent comprehensive review of the MLPG 
method with emphasis on the solid mechanics 
applications can be found in Atluri’s book [2]. 
Among other developments in the area of meshless 
techniques, one can mention the method of spheres 
proposed by De and Bathe [8] in which subdomains of 
spherical shapes are generated at every point in the 
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domain. Subsequently, the dependant variables are 
interpolated within the spheres and the discretized 
equations are obtained by substituting the interpolations 
in the Galerkin weak form of the differential equation for 
the subdomains. Other truly meshless schemes that have 
been recently proposed and applied specifically to 
elasticity problems are the local point interpolation 
method by Gu and Liu [9], the regular hybrid boundary 
node method by Zhang et al. [10], and a modified 
meshless local Petrov-Galerkin method to elasticity 
problems in computer modeling and simulation by Hu et 
al. [11]. These schemes are based on the MLPG method 
with some degree of modifications.  
There are also recent developments in the applications of 
meshless techniques to fluid flow and heat transfer 
problems. Arefmanesh et al. have applied a variation of 
the MLPG method with unity as the test function to the 
convection-diffusion, and potential flow equations [12]. 
The results show that the method combined with a proper 
upwinding scheme is very promising for obtaining 
accurate solutions to problems in the field of 
thermofluids. In a very recent paper Liu has used the 
MLPG approach based on discrete-ordinate equations to 
solve the radiative heat transfer problem in multi-
dimensional absorbing-emitting-scattering semitrans-
parent graded index media [13]. His results show that the 
MLPG method has a good accuracy in solving radiative 
heat transfer problems.  
In this present study, the meshless local Petrov-Galerkin 
method with unity as the test function is applied to the 
solutions of the non-isothermal viscous flow equations. 
A variation of the streamline upwind Petrov-Galerkin 
(SUPG) technique based on adding optimal balancing 
diffusion along the streamlines is employed to obtain 
stable solution for high Peclet and Reynolds numbers. To 
establish the rate of convergence of the method, 
wherever possible, the L2-norm of the error is also 
presented.  
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Due to the point distributions and control volume shapes 
flexibility of the method, the proposed meshless scheme 
suggests to be feasible in situations where fluid flow 
through reasonably complex narrow geometries exist.  
 

2. Numerical Model 
A bounded region  with the boundary Ω hg ΓΓ=Γ ∪ in 
the two-dimensional space (Fig. 1) is considered. The 
steady incompressible fluid flow and energy equations 
written in terms of the stream function and vorticity in a 
dimensionless form are 
 

( ) ωω 2

Re
1. ∇=∇ V

GG
                                            (1) 

ωψ −=∇ 2                                                                  (2) 

( ) TTV 2

Pe
1. ∇=∇

GG
                                                      (3) 

where, V
G

is the dimensionless velocity vector with 
components  and v  in the u Uu /*= Uv /*= x  and 

directions, respectively,  is the 
dimensionless vorticity, Re
y UL/*ωω =

ν/UL=  is the Reynolds 
number, Pe α/UL=  is the Peclet number, 

UL/*ψψ =  is the dimensionless stream function, and 

 is the dimensionless 
temperature. 

)/()( *
BWTWBW TTTTT −−=

In the meshless local Petrov-Galerkin method with unity 
as the test function, hereafter named the meshless control 
volume method (MCVM) due to its similarity with the 
finite volume techniques, a collection of points is 
selected in the domain. Subsequently, a control volume 
is generated around each of the points. The control 
volumes have simple shapes such as circle or rectangle in 
the two-dimensional space. The size of the control 
volumes and the number of points belonging to each one 
of them can, in general, vary. Contrary to the usual 
control volume techniques, in this method the control 
volumes can intersect each other and overlap [14]. 
 

 
Fig 1. Domain  with two circular control 

volumes 
Ω

As the next step in the numerical implementation of the 
MCVM, Eqs. (1), (2), and (3), are multiplied by the test 
function . With =1 the resulting expressions are 
then integrated over a typical control volume 

w w
iΩ . 

However, in order to obtain stable solutions for 
convection-dominated flows, a streamline upwind 
scheme is required [15, 16]. To apply the upwind 
technique to Eq. (1) as an example, this equation is first 
transformed to the streamline co-ordinates, s-t, with s 
pointing in the streamline direction and t being 
perpendicular to it. The resulting equation, after adding 
the artificial viscosity Re/1  properly, is 
 

Re ReRe

2 2

2 2

ω 1 1 ω 1 ωV = + +
s s t

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (4) 

 

where, is the magnitude of the velocity 
vector. The optimal artificial viscosity is obtained from 
[12, 16]. 

2/122 )( vuV +=

Re
ReRe

+

+

1 V h 2= coth -
2 2
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⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
  (5) 

where, ν/Re hV=+  is the local Reynolds number. The 
magnitude of h  for uniform point distribution cases, is 

Vvuhh /|)||(|2 +=  with h being the distance 
between two consecutive points. Transforming Eq. (4) 
back to the x-y co-ordinates yields 
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Following a similar procedure as above, the energy 
equation for convection-dominated cases can be written 
as 
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The optimal artificial diffusivity used in the above 
equation is obtained from 
 

PePe

+

+

1 V h Pe 2= coth -
2 2

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (8) 

 
where, α/Pe hV=+  . 
Multiplying Eqs. (2), (6), and (7) by the test function 

=1, and integrating the resulting equations over w iΩ  
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give, after integration by parts, the following weak forms 
of the vorticity, stream function, and energy equations, 
respectively  for a typical control volume. 
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where,  is the boundary of the ,  is the unit 

outward normal to the . After solving for the stream 
function and vorticity, pressure can be obtained from the 
following Poisson equation [17] 
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Multiplying Eq. (12) by unity weight function, and 
integrating the resulting equation by parts yield the 
following weak form of pressure equation for a typical 
control volume 
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          (13) 

 
where, the right hand-side can be calculated after solving 
for the stream function.  
To obtain the discretized equation of the control volume 

, which contains n points, the unknown field, e.g. the 

vorticity, is approximated within  by [18] 
iΩ

iΩ
 

( ) ( ) ( ) ( )αP yxyxPyxyx T
l

m

l
l

i ,,,,
1

)( ==≅ ∑
=

αωω          (14) 

 
where, [ m ]ααα ,...,, 21=α T  and the elements of the 

vector , , ),( yxP ),( yxPl ml )1(1= , are, in general, 
monomials. Approximations similar to Eq. (14) are also 
used for the unknown stream function and temperature 
fields.  
Setting the approximation, Eq. (14), equal to the value of 
the ω ),( yx at the n points belonging to the control 
volume yields 

T
1 1

T
n n

= = =
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  (15) 

 

where, jω =ω ),( jj yx  is the magnitude of the ω  at 

the point , and = is the 
transpose of vector of monomials at this point. The 
elements of matrix C are , 

),( jj yx j
TP ),( jj

T yxP

),( jjljl yxpC = ml )1(1= , 

nj )1(1= . If the number of points belonging to the 
control volume n is equal to the number of monomials of 
the vector , m, the performed interpolation will 
be exact at the points (i.e., it will be equal to the value of 
the unknown function at the points), and the vector α  
will be given by 

),( yxP
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the approximation ),()( yxiω , in this case, is expressed 
by 
 

( ) j

n

j

i
j
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)()( ,),(                                    (17) 

 

where,  with =1(1)n, are the usual 
interpolation function (i.e., Lagrange polynomials) and 

),()( yxi
jφ j

jω  with =1(1)n, are the nodal values of the unknown 
function at the points.  

j

The interpolation functions, which satisfy the standard 
conditions =),()(

ll
i

j yxφ jlδ  ( jlδ  being the Kronocker 
delta) are given by [16, 17] 
 

.)1(1,),(),( 1

1
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l
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i
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=
∑φ               (18) 

 
The control volumes which are employed in this study 
are rectangular and contain nine points each, n=9. The 
vector , which is used in this case, has nine 
elements, m=9, and its transpose is 

),( yxP

[ ]2 2 2 2 2 2T (x , y) = 1, x , y, xy, x , y , x y, xy , x yP . 
Substituting this vector of monomials into Eq. (18) yields 
the biquadratic interpolation functions to be used for all 
the test cases in this study.  
If the number of points belonging to the control volume 
is greater than the number of monomials of the vector 

(i.e., > ), the approximation will still be 
given by (17); however, the interpolation functions are 
now written as follows [18]:  

),( yxP n m
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where, 
m

-1 -1 T
j j j

j=1
= , = (x , y ) (x , y∑D A B A P P j ) , and 

. [ ]1 1 2 2 n n= (x , y ), (x , y ),..., (x , y )B P P P
Substituting the approximation ),()( yxiω  and similar 
approximations for the stream function and temperature 
into Eqs. (9), (10), and (11), yield the discretized 
equations for . Using the same procedure for every 
control volume gives the system of the discretized 
equations for all the points within the domain.  

iΩ

Solving the system of algebraic equations yields the 
unknown variables at the points. Having obtained the 
stream function, the right hand-side of Eq. (13) is 
calculated.  
To acquire the pressure distribution, its interpolation 
within a control volume is substituted into Eq. (13) 
yielding the discretized equation. The pressure 
distribution is obtained after solving the system of 
discretized equations for pressure for all the control 
volumes. 
Due to the existence of the convective terms within the 
energy as well as the vorticity equations, the obtained 
stiffness matrices are asymmetric. However, the global 
stiffness matrix for the stream function equation (the 
Poisson equation) is symmetric. Moreover, the resulting 
global matrices for the MCVM method are diagonally 
dominant.  
Additionally, due to the coupling of the vorticity 
equation with the stream function equation, the resulting 
stiffness matrices are non-linear; hence, an iterative 
scheme is utilized to obtain the solutions. Because of the 
non-linearity, and the coupling, the condition numbers 
during the iteration scheme are constantly varying. 
However, for a linear matrix such as that obtained in a 
pure heat conduction problem, the condition number 
using this proposed method is a constant. For a pure 
conduction in a square domain using the MCVM method 
with a regular 11×11 uniform point distribution [12], the 
condition number based on infinity norm is equal to 39.6. 
The condition number for the same problem using the 
standard finite volume method with the same control 
volume size is equal to 58.5.  
For other point distributions and mesh sizes, the 
condition numbers of the two schemes are comparable. 
The following examples demonstrate the method 
implementation.  
 

3. Results 
Equations (9), (10), and (11) are solved for the lid-driven 
cavity flow as a test case. The domain, the boundary 
conditions, the point distribution, and a typical control 
volume for the driven cavity flow are shown in Fig. 2. 
The control volume contains nine points. The shape 
functions are biquadratic [16] and the interpolation is 
exact in this case. A 33×33 nonuniform point distribution 
is employed for the numerical simulations.  

The streamlines for the driven cavity flow for =100 
are shown in Fig. 3. Figure 4 shows a comparison of the 
cavity horizontal centerline velocity for Re =100, 
obtained by the MCVM, with the results of the finite 
element method, FEM [19]. 

Re

 

 
Fig 2. A 33×33 no uniform point distribution for      

lid-driven cavity flow 
 
Various no uniform point distributions with increasing 
degree of refinement have been employed for the 
MCVM results in this figure.  
Convergence of the MCVM results to a unique velocity 
is demonstrated in this figure. The converged velocity is 
in good agreement with the results of the finite element 
method.  
Fig. 5 shows the discrete L2-norms of the error for the 
stream function and vorticity for =100 and 400. The 
convergence of the MCVM results with decreasing the 
size of the control volumes is demonstrated in this figure. 
The rate of convergence, as observed from the figure, is 
nearly quadratic. The isotherms for the driven cavity 
flow for Pe =50, =100, and the thermal boundary 
conditions shown in Fig. 2, are depicted in Fig. 6.  

Re

Re

 

 
Fig 3. Streamline for lid-driven cavity flow for 

Re=100 
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Fig 4. Cavity horizontal centerline velocities for 

Re=100, comparison of MCVM with FEM results[19] 
 

 
Fig 5. Discrete L2-norm of the error for the stream 

function and vorticity for Re=100 and 400 
 

 
Fig 6. Isotherms of the lid-driven cavity flow for 

Re=100 and Pe=50 

Figs. 7 and 8 show the streamline and the horizontal 
centerline velocity for the driven cavity flow for 

=400, respectively. In Fig. 8 the horizontal centerline 
velocity obtained by the MCVM using different point 
distributions are compared with those obtained by the 
finite difference method (FDM) employing a pure 
stream-function formulation [20]. The convergence of 
the MCVM results to the results of the finite difference 
method with decreasing the size of the control volumes is 
clearly observed in this figure. 

Re

 

 
Fig7. Streamlines for the lid-driven cavity flow for 

Re=400 
 

 
Fig 8. Cavity horizontal centerline velocity for Re=400, 

comparisons of MCVM with FDM results [20] 
 

4. Conclusions 
A meshless local Petrov-Galerkin method with the 
weighting function of unity is applied to the solution of 
the Navier-Stokes as well as energy equations for a lid-
driven cavity flow test case. Reynolds numbers of 100 
and 400 were considered for the driven cavity flow with 
non-uniform point distributions for the implemented 
numerical method. The streamlines as well as the cavity 
horizontal centerline velocities obtained through the 
proposed method were compared with those of the finite 
element, and the finite difference methods implemented 
by other investigators. The comparisons show very close 
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agreement, and even coincidence for some substantial 
portions of the domain.  
The discrete L2-norms of the error for the stream 
function and the vorticity show nearly quadratic 
convergence rate.  
Based on the obtained results and their comparisons with 
other numerical methods, the accuracy of the proposed 
method is established, hence the method proves to be 
applicable for solving non-isothermal fluid flow 
problems.  
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Nomenclature 
h : distance between two consecutive points 
L : domain length 
N : total number of points 
P : pressure 
Pe : Peclet number 
q : heat flux 
R : radius 
Re : Reynolds number 

 T : temperature 
U : lid velocity 
V : velocity 

W : weighting function 
 

Greek Symbols 
α : thermal diffusivity 
φ : interpolation function 
Γ : boundary 

hg ΓΓ , : boundary segments 
ν : kinematic viscosity 
ρ : density 
Ω : domain 
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ω : vorticity 
ψ : stream function 

 

Subscripts 
i: point or control volume number 
BW: bottom wall 
TW: top wall 

 

Superscripts 
*: physical variable 
−: dimensionless variable, balancing coefficient 
∧: unit vector 
+: local variable 
→: vector 
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