A Fuzzy TOPSIS Method Based on Left and Right Scores

Mir. B. Aryanezhad, M.J. Tarokh, M.N. Mokhtarian & F. Zaheri

Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
M.N. Mokhtarian, Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran
F. Zaheri, Department of Industrial Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran

ABSTRACT

Multiple criteria decision making (MCDM) problem is one of the famous different kinds of decision making problems. In more cases in real situations, determining the exact values for MCDM problems is difficult or impossible. So, the values of alternatives with respect to the criteria or / and the values of criteria weights, are considered as fuzzy values (fuzzy numbers). In such conditions, the conventional crisp approaches for solving MCDM problems tend to be less effective for dealing with the imprecise or vagueness nature of the linguistic assessments. In this situation, the fuzzy MCDM methods are applied for solving MCDM problems. In this paper, we propose a fuzzy TOPSIS (for Order Preference by Similarity to Ideal Solution) method based on left and right scores for fuzzy MCDM problems. To show the applicability of the proposed method, two numerical examples are presented. As a result, our proposed method is precise, easy use and practical for solving MCDM problem with fuzzy data. Moreover, the proposed method considers the decision makers (DMs) preference in the decision making process. It seems that the proposed fuzzy TOPSIS method is flexible and easy to use and has a low computational volume.

KEYWORDS

MCDM; TOPSIS; Fuzzy sets; Left and right scores

1. Introduction

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method is a popular approach to multiple criteria decision making (MCDM) problems that was proposed by Hwang and Yoon [1]. This method has been widely used in the literature. Some of papers in the literature applied the TOPSIS method for solving real application problems. For example: Wang and Elhag [2] proposed a fuzzy TOPSIS method based on alpha level sets and presented a nonlinear programming (NLP) solution procedure. The relationship between the fuzzy TOPSIS method and fuzzy weighted average (FWA) is also discussed in their paper. Kahraman et al. [3] developed a multi-attribute decision making model for evaluating and selecting among logistic information technologies. They also presented a sensitivity analysis for their method. Boran et al. [4] combined TOPSIS method with intuitionistic fuzzy set to select appropriate supplier in group decision making environment. Intuitionistic fuzzy weighted averaging (IFWA) operator utilized to aggregate individual opinions of decision makers for rating the importance of criteria and alternatives. Amiri et al [5] presented a new method which is extracted from the multiple decision making methods named eigenvector–DEA–TOPSIS method to evaluate the risk of the number of related
portfolios to the foreign exchange market (FOREX). Chamodrakas et al. [6] proposed a new class of fuzzy methods for evaluating customers is. Firstly, their approach tackles the issue of uncertainty that is inherent in the problem of customer evaluation and secondly, the TOPSIS method is modified in order to integrate the behavioral pattern of the decision maker into its “principle of compromise”. Sun and Lin [7] used the fuzzy TOPSIS method based on fuzzy sets in solving MCDM problems. From their research results, the security and trust are the most important factors for improving the competitive advantage of shopping website. Gumus [8] proposed a two step methodology to evaluate hazardous waste transportation firms containing the methods of fuzzy-AHP and TOPSIS. In their method, TOPSIS uses fuzzy-AHP result weights as its input weights. Lin et al. [9] presented a framework that integrates the AHP and the TOPSIS to assist designers in identifying customer requirements and design characteristics, and help to achieve an effective evaluation of the final design solution. Onut et al. [10] presented a fuzzy TOPSIS based methodology to solve the solid waste transshipment site selection problem in Istanbul, Turkey. In their method, the criteria weights are calculated by using the AHP. Some of papers in the literature applied the TOPSIS method in theoretic concept. For example: Shih [11] proposed 11-step procedure to exploit incremental analysis or marginal analysis to overcome the drawbacks of ratio scales utilized invarious multi-criteria or multi-attribute decision making (MCDM/MADM) techniques. Deng et al. [12] formulated the inter-company comparison process as a multi-criteria analysis model, and presented an effective approach by modifying TOPSIS for solving the problem. The modified TOPSIS approach can identify the relevance of the financial ratios to the evaluation result, and indicate the performance difference between companies on each financial ratio. Chen [13] extended a fuzzy TOPSIS method so that the rating of each alternative and the weight of each criterion are described by linguistic terms which can be expressed in triangular fuzzy numbers. Then, a vertex method is proposed to calculate the distance between two triangular fuzzy numbers. Opirovic and Tzeng [14] compared two MCDM methods, VIKOR and TOPSIS, focusing on modeling aggregating function and normalization, in order to reveal and to compare the procedural basis of these two MCDM methods. Wang and Lee [15] proposed a novel approach that involves end-user into the whole decision making process. In their approach, the subjective weights assigned by decision makers (DM) are normalized into a comparable scale. In addition, they also adopted end-user ratings as an objective weight based on Shannon’s entropy theory. Ashtiani et al. [16] proposed interval-valued fuzzy TOPSIS method for solving MCDM problems in which the weights of criteria are unequal, using interval-valued fuzzy sets concepts. Jahanshahloo et al. [17] presented a new method for solving MCDM problems by TOPSIS method consisting of interval data. In their method the score of each alternative will be an interval number. Triantaphyllou and Lin [18] developed a fuzzy version of the TOPSIS method based on fuzzy arithmetic operations, which leads to a fuzzy relative closeness for each alternative.

The rest of this paper is organized as follows. In section 2, we only introduced the backgrounds that significantly related to this paper. Additional backgrounds are given in the appendixes A and B. In section 3, we propose our fuzzy TOPSIS method based on left and right scores. In section 4, two numerical examples are presented to better explain the capabilities and potentials of our proposed method. Finally, the paper is concluded in section 5.

2. Background

We propose the normalization process for triangular and trapezoidal fuzzy numbers, separately as follow.

If \(\tilde{y}_{ij} = (a_{ij}, b_{ij}, c_{ij}) \) \(i = 1, \ldots, n; j = 1, \ldots, m \) are triangular fuzzy numbers, then the normalization process can be conducted as:

\[
\begin{align*}
(\tilde{y}_{ij})_N &= ((a_{ij})_N, (b_{ij})_N, (c_{ij})_N) = \left(\frac{a_{ij} - a_{ij}^{\text{Min}}}{\Delta a_{ij}^{\text{Max}}}, \frac{b_{ij} - a_{ij}^{\text{Min}}}{\Delta a_{ij}^{\text{Max}}}, \frac{c_{ij} - a_{ij}^{\text{Min}}}{\Delta a_{ij}^{\text{Max}}} \right), \quad i = 1, \ldots, n; \quad j \in \Omega_b (1)
\end{align*}
\]

\[
\begin{align*}
(\tilde{y}_{ij})_N &= ((a_{ij})_N, (b_{ij})_N, (c_{ij})_N) = \left(\frac{c_{ij} - c_{ij}^{\text{Max}}}{\Delta c_{ij}^{\text{Max}}}, \frac{b_{ij} - c_{ij}^{\text{Max}}}{\Delta c_{ij}^{\text{Max}}}, \frac{a_{ij} - c_{ij}^{\text{Max}}}{\Delta c_{ij}^{\text{Max}}} \right), \quad i = 1, \ldots, n; \quad j \in \Omega_c (2)
\end{align*}
\]

Where \(\Omega_b \) and \(\Omega_c \) are the sets of benefit criteria / attributes and cost criteria / attributes, respectively and

\[
\begin{align*}
c_{ij}^{\text{Max}} &= \text{Max}_j c_{ij}, \quad a_{ij}^{\text{Min}} = \text{Min}_j a_{ij}, \quad i = 1, \ldots, n \\
\Delta a_{ij}^{\text{Max}} &= c_{ij}^{\text{Max}} - a_{ij}^{\text{Min}}, \quad \Delta c_{ij}^{\text{Max}} = a_{ij}^{\text{Min}} - c_{ij}^{\text{Max}}
\end{align*}
\]
If \(\tilde{y}_j = (a_j, b_j, c_j, d_j) \) \((i = 1, \ldots, n, j = 1, \ldots, m)\) are trapezoidal fuzzy numbers, then the normalization

\[
(\tilde{y}_j)_N = ((a_j)_N, (b_j)_N, (c_j)_N, (d_j)_N) = \left(\frac{a_j - a_{j, \min}}{\Delta_{\max}^{\min}}, \frac{b_j - a_{j, \min}}{\Delta_{\max}^{\min}}, \frac{c_j - a_{j, \min}}{\Delta_{\max}^{\min}}, \frac{d_j - a_{j, \min}}{\Delta_{\max}^{\min}} \right)
\]

\(i = 1, \ldots, n \); \(j \in \Omega_b \)

\[
(\tilde{y}_j)_N = ((a_j)_N, (b_j)_N, (c_j)_N, (d_j)_N) = \left(\frac{d_j - d_{j, \max}}{\Delta_{\max}^{\max}}, \frac{c_j - d_{j, \max}}{\Delta_{\max}^{\max}}, \frac{b_j - d_{j, \max}}{\Delta_{\max}^{\max}}, \frac{a_j - d_{j, \max}}{\Delta_{\max}^{\max}} \right)
\]

\(i = 1, \ldots, n \); \(j \in \Omega_c \)

Where \(\Omega_b \) and \(\Omega_c \) are the sets of benefit criteria and cost criteria, respectively and

\[
(R_s)_\tilde{K} = \sup_x [\mu_\tilde{K}(x) \wedge \mu_{\max}(x)]
\]

Fig. 1. The left and right scores for fuzzy number \(\tilde{K} \).

And membership functions for maximizing set and minimizing set are defined as:

\[
\mu_{\max}(x) = \begin{cases} 1 - x, & 0 \leq x \leq 1 \\ 0, & \text{otherwise} \end{cases}, \quad \mu_{\min}(x) = \begin{cases} x, & 0 \leq x \leq 1 \\ 0, & \text{otherwise} \end{cases}
\]

In order to simplification and for determining left and right scores for normalized fuzzy numbers \((\tilde{y}_j)_N \) \((i = 1, \ldots, n, j = 1, \ldots, m)\), with respect to the Eqs. (5) and (6), we define Eqs. (8) and (9) or Eqs. (10) and (11) as
\[
(L_s)_j = \frac{(b_{ij})_N - (a_{ij})_N}{1 + (b_{ij})_N - (a_{ij})_N} \tag{10}
\]

\[
(R_s)_j = \frac{(d_{ij})_N - (c_{ij})_N}{1 + (d_{ij})_N - (c_{ij})_N} \tag{11}
\]

According to Shipley et al. [22], in the general TOPSIS method, the separation of each alternative from the ideal solution \((D_s^+)\) and the separation of each alternative from the negative ideal solution \((D_s^-)\) are defined as:

\[
I^+ = \left\{ ((y_1)_N, \ldots, (y_m)_N) \left| (\text{Max}_j (y_{ij})_N | j \in \Omega_b), (\text{Min}_j (y_{ij})_N | j \in \Omega_c) \right. \right\}
\]

\[
I^- = \left\{ ((y_1)_N, \ldots, (y_m)_N) \left| (\text{Min}_j (y_{ij})_N | j \in \Omega_b), (\text{Max}_j (y_{ij})_N | j \in \Omega_c) \right. \right\}
\]

Where \(\Omega_b\) and \(\Omega_c\) are defined as before.

Moreover, modified separations of each alternative from the ideal solution \((D_s^+)\) and negative ideal solution \((D_s^-)\) are defined as:

\[
D_s^+ = \sqrt{\sum_{j=1}^{m} w_j \left((y_{ij})_N - (y_{ij})_N \right)^2} \tag{13}
\]

\[
D_s^- = \sqrt{\sum_{j=1}^{m} w_j \left((y_{ij})_N - (y_{ij})_N \right)^2} \tag{14}
\]

3. Fuzzy TOPSIS Method Based on Left and Right Scores

Suppose a crisp MCDM problem has \(n\) alternatives \((A_1, \ldots, A_n)\) and \(m\) decision criteria \((C_1, \ldots, C_m)\). Each alternative is evaluated with respect to the \(m\) criteria. All the values / ratings assigned to the alternatives with respect to each criterion from a decision matrix, denoted by \(S = (y_{ij})_{n \times m}\), and the relative weight vector about the criteria, denoted by \(W = (w_1, \ldots, w_m)\), that satisfying \(\sum_{j=1}^{m} w_j = 1\). Due to the fact that, in some cases, determining the exact values for the elements of decision matrix is difficult, so, their values are considered as fuzzy numbers. In the other words, in fuzzy MCDM problems, the values of alternatives with respect to each criterion and the values of relative weights with respect to each criterion are usually characterized by fuzzy numbers. By considering the fact that, the TOPSIS method can also be used to deal with MCDM problems as a popular, accurate, and easy to use method, in this section, we extend TOPSIS for fuzzy MCDM problems based on left and right scores via an algorithmic method as follows:

Step 1: Construct the fuzzy decision matrix and fuzzy weights matrix as:

\[
\tilde{Y} = \begin{pmatrix}
\tilde{y}_{11} & \cdots & \tilde{y}_{1j} & \cdots & \tilde{y}_{1m} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\tilde{y}_{n1} & \cdots & \tilde{y}_{nj} & \cdots & \tilde{y}_{nm}
\end{pmatrix}
\]

\[
\tilde{W} = (\tilde{w}_1, \ldots, \tilde{w}_j, \ldots, \tilde{w}_m)
\]

Step 2: Normalize fuzzy decision matrix by Eqs. (1) and (2) or Eqs. (3) and (4) and normalize fuzzy weights matrix by Eqs. (1) or (3). The normalized fuzzy decision matrix and normalized fuzzy weights matrix are shown as
\[
\hat{\mathbf{y}} = \begin{pmatrix}
(\bar{y}_{11})_N & \ldots & (\bar{y}_{1j})_N & \ldots & (\bar{y}_{1m})_N \\
\vdots & & \vdots & & \vdots \\
(\bar{y}_{i1})_N & \ldots & (\bar{y}_{ij})_N & \ldots & (\bar{y}_{im})_N \\
\vdots & & \vdots & & \vdots \\
(\bar{y}_{nl})_N & \ldots & (\bar{y}_{nj})_N & \ldots & (\bar{y}_{nm})_N
\end{pmatrix}
\]

\[
\hat{\mathbf{W}} = \begin{pmatrix}
(\bar{w}_{11})_N & \ldots & (\bar{w}_{1j})_N & \ldots & (\bar{w}_{1m})_N \\
\vdots & & \vdots & & \vdots \\
(\bar{w}_{i1})_N & \ldots & (\bar{w}_{ij})_N & \ldots & (\bar{w}_{im})_N \\
\vdots & & \vdots & & \vdots \\
(\bar{w}_{nl})_N & \ldots & (\bar{w}_{nj})_N & \ldots & (\bar{w}_{nm})_N
\end{pmatrix}
\]

In above equations, we define \(\bar{y}_{ij}\) and \(\bar{w}_{ij}\) as normalized fuzzy values / ratings related to \(\bar{y}_{ij}\) and \(\bar{w}_{ij}\) respectively. Moreover, one of the important issues in our proposed method is that, the fuzzy weights matrix should be consider as a separate column and should be normalize by Eqs. (1) or (3).

Step 3: Calculate the left and right scores of normalized fuzzy numbers by Eqs. (8) and (9) or Eqs. (10) and (11). It should be consider that the normalized fuzzy numbers are existent in normalized fuzzy decision matrix and normalized fuzzy weights matrix.

Step 4: Construct two matrices that include intervals of left and right scores. It should be noted that one of the matrices is related to normalized fuzzy decision matrix, another is related to normalized fuzzy weights matrix. The Two matrices are shown as:

\[
(L_S), (R_S) = \begin{pmatrix}
\left[(L_{s1}, (R_{s1}) \right]_{i1}& \ldots & \left[(L_{s1}, (R_{s1}) \right]_{ij} & \ldots & \left[(L_{s1}, (R_{s1}) \right]_{im} \\
\vdots & & \vdots & & \vdots \\
\left[(L_{s1}, (R_{s1}) \right]_{i1}& \ldots & \left[(L_{s1}, (R_{s1}) \right]_{ij} & \ldots & \left[(L_{s1}, (R_{s1}) \right]_{im} \\
\vdots & & \vdots & & \vdots \\
\left[(L_{s1}, (R_{s1}) \right]_{i1}& \ldots & \left[(L_{s1}, (R_{s1}) \right]_{ij} & \ldots & \left[(L_{s1}, (R_{s1}) \right]_{im}
\end{pmatrix}
\]

\[
((L_S), (R_S)) = \begin{pmatrix}
\left[(L_{s1}, (R_{s1}) \right]_{i1}& \ldots & \left[(L_{s1}, (R_{s1}) \right]_{ij} & \ldots & \left[(L_{s1}, (R_{s1}) \right]_{im} \\
\vdots & & \vdots & & \vdots \\
\left[(L_{s1}, (R_{s1}) \right]_{i1}& \ldots & \left[(L_{s1}, (R_{s1}) \right]_{ij} & \ldots & \left[(L_{s1}, (R_{s1}) \right]_{im} \\
\vdots & & \vdots & & \vdots \\
\left[(L_{s1}, (R_{s1}) \right]_{i1}& \ldots & \left[(L_{s1}, (R_{s1}) \right]_{ij} & \ldots & \left[(L_{s1}, (R_{s1}) \right]_{im}
\end{pmatrix}
\]

For the purpose of better realization, we show the concept of \([(L_S), (R_S)]\) graphically by Fig. 2.

![Fig. 2. The concept of \([(L_S), (R_S)]\).](image)

Step 5: Determine the matrices that include ideal and negative ideal solutions as

\[
I^+ = \{1, \ldots, 1\}
\]

\[
I^- = \{0, \ldots, 0\}
\]

Step 6: Calculate the separations of each alternative from the ideal solution \(D_i^+\) and negative ideal solution \(D_i^-\).

If we consider \(r_{ij} = [(L_{s1}, (R_{s1})]_{ij} = [(L_{s1}), (R_{s1})]_{ij}\) and \(w_j = [(L_{s1}), (R_{s1})]_{ij} = [(L_{s1}), (R_{s1})]_{ij}\), and with respect to the Eqs. (19), we can write the separations of each alternative from the ideal solution \(D_i^+\) and negative ideal solution \(D_i^-\) as

\[
D_i^+ = \sqrt{\sum_{j=1}^{m} w_j (r_{ij} - 1)^2}
\]

\[
D_i^- = \sqrt{\sum_{j=1}^{m} w_j (r_{ij} - 0)^2} = \sqrt{\sum_{j=1}^{m} w_j r_{ij}^2}
\]

Where
\((L_s)_j : w_j : (R_s)_j \), \(j = 1, \ldots, m\)

\((L_s)_j : r_j : (R_s)_j \), \(j = 1, \ldots, m\)

\((RC)_i = \frac{\sqrt{\sum_{j=1}^{m} w_j (r_{ij})^2}}{\sqrt{\sum_{j=1}^{m} w_j (r_{ij})^2} + \sqrt{\sum_{j=1}^{m} w_j (r_{ij} - 1)^2}} , \quad i = 1, \ldots, n

Step 7: Calculate the relative closeness interval of each alternative to the ideal solution.
With respect to the Eqs. (21) and (22), we can write the relative closeness of each alternative to the ideal solution as:

\(((RC)_i) \)\(\beta = \min \left(\sqrt{\sum_{j=1}^{m} w_j (R_{ij})^2}, \sqrt{\sum_{j=1}^{m} w_j (R_{ij} - 1)^2}\right)

s.t.
\((L_s)_j : w_j : (R_s)_j \), \(j = 1, \ldots, m\)

\((L_s)_j : r_j : (R_s)_j \), \(j = 1, \ldots, m\)

It is clear that, \((RC)_i\) is an interval that whose lower and upper bounds can be captured by the multi objective fractional decision making model as:

\(((RC)_i) \)\(\beta = \max \left(\sqrt{\sum_{j=1}^{m} w_j (R_{ij})^2}, \sqrt{\sum_{j=1}^{m} w_j (R_{ij} - 1)^2}\right)

\(w_j (r_{ij}) \left(\sum_{j=1}^{m} w_j (r_{ij} - 1)^2 \right) + w_j (1 - r_{ij}) \left(\sum_{j=1}^{m} w_j (r_{ij})^2 \right) > 0 , \quad j = 1, \ldots, m

\(\frac{\partial (RC)}{\partial (r_{ij})} = \frac{\left(\sum_{j=1}^{m} w_j (r_{ij})^2 \right) - \left(\sum_{j=1}^{m} w_j (r_{ij} - 1)^2 \right) \left(\sum_{j=1}^{m} w_j (r_{ij})^2 \right)}{\left(\sum_{j=1}^{m} w_j (r_{ij})^2 \right) + \left(\sum_{j=1}^{m} w_j (r_{ij} - 1)^2 \right)\left(\sum_{j=1}^{m} w_j (r_{ij})^2 \right)}

It is clear that \((RC)_i\) is a monotonically increasing function of \(r_{ij}\), that reaches its maximum at \(r_{ij} = (R_s)_j\) and its minimum at \(r_{ij} = (L_s)_j\). So, the above multi objective fractional decision making model can be rewritten as:

\(((RC)_i) \)\(\beta = \max \left(\sqrt{\sum_{j=1}^{m} w_j (L_{ij})^2}, \sqrt{\sum_{j=1}^{m} w_j (L_{ij} - 1)^2}\right)

\(\alpha \times \left(\sum_{j=1}^{m} w_j (L_{ij})^2 \right) - \beta \times \left(\sum_{j=1}^{m} w_j (L_{ij} - 1)^2 \right)

s.t.
\((L_s)_j : w_j : (R_s)_j \), \(j = 1, \ldots, m\)
So, it is obvious that the \((RC_i)\) for each alternative can be generated by solving the NLP model (26). Moreover the above NLP model can be solved using Microsoft Excel solver or LINGO software package without striking a blowing because its constraints are all linear. It should be considered that we apply the \(\alpha = \beta = 0.5\) for solving the numerical examples in this paper.

Step 8: Rank and prioritize the alternatives according to their relative closeness to the ideal solution.

As a summary, the new fuzzy TOPSIS method based on left and right scores can be summed up as follows:

- Construct the fuzzy decision matrix and fuzzy weights matrix.
- Normalize fuzzy decision matrix by Eqs. (1) and (2) or Eqs. (3) and (4) and normalize fuzzy weights matrix by Eqs. (1) or (3).
- Calculate the left and right scores of fuzzy numbers by Eqs. (8) and (9) or Eqs. (10) and (11).
- Construct two matrices that include intervals of left and right scores. It should be noted that one of the matrices is related to normalized fuzzy decision matrix and another is related to normalized fuzzy weights matrix.
- Determine the matrices that include ideal and negative ideal solutions.

- Calculate the separations of each alternative from the ideal solution \((D_i^+\) and negative ideal solution \((D_i^-)\).
- Calculate the relative closeness of each alternative to the ideal solution.
- Rank and prioritize the alternatives according to their relative closeness to the ideal solution.

4. Numerical Examples

In this section, we examine two numerical examples using our method for the purpose of showing the applicability of it. The first numerical example is taken from Triantaphyllou and Lin [25]. The second numerical example is a real application related to the agent selection in the supply chain of an electronic company.

Example 1. Reconsider the example investigated by Triantaphyllou and Lin [18], in which three alternatives \(A_1, A_2, A_3\) are evaluated against four benefit criteria \(C_1, C_2, C_3, C_4\). Table 1 shows the fuzzy weights, normalized fuzzy weights and left and right scores related to them. Table 2 shows fuzzy ratings of alternatives, normalized fuzzy ratings of alternatives and left and right scores related to them. The relative closeness of each alternative to the ideal solution and the average relative closeness of each alternative to the ideal solution and the rank of each alternative are shown in Table 3. We also compare the given results of our method with the results of Wang et al’s [2] and Triantaphyllou and Lin’s [18] methods for this numerical example. We also propose the comparing results in the Table 3.

| Tab. 1. Fuzzy weights, normalized fuzzy weights and left and right scores |
|-----|-----------------|-----------------|---------------|
| Criteria | Fuzzy weights | Normalized fuzzy weights | Left and right scores |
| C1 | (0.13, 0.20, 0.31) | (0.10, 0.25, 0.48) | [0.22, 0.39] |
| C2 | (0.08, 0.15, 0.25) | (0.00, 0.15, 0.35) | [0.13, 0.29] |
| C3 | (0.29, 0.40, 0.56) | (0.44, 0.67, 1.00) | [0.54, 0.75] |
| C4 | (0.17, 0.25, 0.38) | (0.19, 0.35, 0.63) | [0.30, 0.49] |

| Tab. 2. Fuzzy ratings of alternatives, normalized fuzzy ratings and left and right scores |
|-----|----------------|-----------------|---------------|
| Criteria | Alternatives | Fuzzy ratings of alternatives | Normalized fuzzy ratings of alternatives | Left and right scores |
| C1 | A1 | (0.08, 0.25, 0.94) | (0.00, 0.06, 0.28) | [0.05, 0.23] |
| | A2 | (0.23, 1.00, 3.10) | (0.05, 0.30, 1.00) | [0.24, 0.59] |
| | A3 | (0.15, 0.40, 1.48) | (0.02, 0.11, 0.46) | [0.10, 0.34] |
| C2 | A1 | (0.25, 0.93, 2.96) | (0.04, 0.28, 1.00) | [0.23, 0.58] |
| | A2 | (0.13, 0.60, 2.24) | (0.00, 0.17, 0.75) | [0.14, 0.47] |
| | A3 | (0.13, 0.20, 0.88) | (0.00, 0.02, 0.27) | [0.02, 0.21] |
| C3 | A1 | (0.34, 0.70, 1.71) | (0.09, 0.20, 0.50) | [0.18, 0.38] |
| | A2 | (0.03, 0.05, 0.09) | (0.00, 0.01, 0.02) | [0.01, 0.02] |
| | A3 | (0.62, 1.48, 3.41) | (0.17, 0.43, 1.00) | [0.34, 0.64] |
| C4 | A1 | (0.12, 0.24, 0.92) | (0.00, 0.04, 0.27) | [0.04, 0.22] |
| | A2 | (0.12, 0.40, 1.48) | (0.00, 0.10, 0.47) | [0.09, 0.34] |
| | A3 | (0.24, 1.00, 3.03) | (0.04, 0.30, 1.00) | [0.24, 0.59] |
As shown in Table 3, the relative closenesses for three alternatives are 0.1106 for A₁, 0.1088 for A₂ and 0.1394 for A₃. Which lead to the ranking of A₁ > A₃ > A₂. Where the symbol ‘>’ means ‘is superior or preferred to’.

With respect to the taken results, our method leads to the same ranking as Wang et al’s Triantaphyllou and Lin’s methods. It should be considered that the taken results in our method are significantly related to the decision maker (DM) preferences.

Example 2. Recently, following the economic crisis in the world, Economic conditions in many countries and especially in developing countries has been very critical. In this situation the large companies are forced to keep their survival via reducing their cost. Due to this fact, one of the best ways to reduce the cost for these companies is to reduce the production volume and the number of their agents in their supply chain. It should be considered that, the large companies often spend a lot of cost for their agents.

In this section, we propose a real multiple criteria decision making problem in which a famous electronic company in Iran wants to reduce agents from 6 agents to 2 in the Isfahan city. It should be considered that each agent is located at the especial zone different from the others. For this purpose, the electronic company uses the consulting team that includes three consultants (three decision makers (DMs)).

The consultants consider 6 agents and evaluate them against eight criteria which include: credibility of agent with respect to the retailers (C₁), average time of ordering for each agent (in terms of week) (C₂), easy shipment of product to each agent (C₃), working time duration for each agent (in terms of month) (C₄), the number of agents of competing company in each zone (C₅), the density of the electronic parts retailers in each zone (C₆), the location position for each agent that include: being in sight (C₇), possibility of future development (C₈). It should be consider that the ratings of each alternative with respect to the criteria C₂, C₄ and C₅ are expressed by crisp values while the ratings of alternatives with respect to other criteria are expressed by linguistic variables that are defined in Table 5. On the other hand, except criterion C₂ and C₅, all of the other criteria are benefit criteria. The relative importance weights of the nine criteria are described by linguistic variables which are defined in Table 4. Table 6 and 7 show the original assessment information provided by three consultants (three DMs), where aggregated fuzzy numbers are obtained by averaging the fuzzy opinions of three consultants that is

\[
\tilde{w}_j = \frac{\tilde{w}_j^1 + \tilde{w}_j^2 + \tilde{w}_j^3}{3} \quad \text{and} \quad \tilde{x}_j = \frac{\tilde{x}_j^1 + \tilde{x}_j^2 + \tilde{x}_j^3}{3},
\]

where \(\tilde{w}_j^k\) and \(\tilde{x}_j^k\) are the relative importance weight and the values given by the \(k\)th consultant (4th DM). Moreover, the left and right scores of aggregated fuzzy weights are shown in Table 6 and the aggregated ratings of each alternative with respect to each criterion and the left and right scores of them are shown in Table 7. The relative closeness of each alternative to the ideal solution and the rank of each alternative are shown in Table 8.
Tab. 6. The relative importance weights of nine criteria, aggregated fuzzy weights and the left and right scores of aggregated fuzzy weights

<table>
<thead>
<tr>
<th>Criteria</th>
<th>DM 1</th>
<th>DM 2</th>
<th>DM 3</th>
<th>Aggregated fuzzy weights</th>
<th>Left and right scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>VH</td>
<td>H</td>
<td>VH</td>
<td>(0.77, 0.93, 0.97)</td>
<td>[0.80, 0.93]</td>
</tr>
<tr>
<td>C_2</td>
<td>H</td>
<td>MH</td>
<td>H</td>
<td>(0.63, 0.77, 0.87)</td>
<td>[0.68, 0.79]</td>
</tr>
<tr>
<td>C_3</td>
<td>MH</td>
<td>H</td>
<td>H</td>
<td>(0.63, 0.77, 0.87)</td>
<td>[0.68, 0.79]</td>
</tr>
<tr>
<td>C_4</td>
<td>MH</td>
<td>MH</td>
<td>H</td>
<td>(0.50, 0.70, 0.80)</td>
<td>[0.58, 0.73]</td>
</tr>
<tr>
<td>C_5</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>(0.70, 0.80, 0.90)</td>
<td>[0.73, 0.82]</td>
</tr>
<tr>
<td>C_6</td>
<td>VH</td>
<td>VH</td>
<td>H</td>
<td>(0.77, 0.93, 0.97)</td>
<td>[0.80, 0.93]</td>
</tr>
<tr>
<td>C_7</td>
<td>H</td>
<td>H</td>
<td>MH</td>
<td>(0.63, 0.77, 0.87)</td>
<td>[0.68, 0.79]</td>
</tr>
<tr>
<td>C_8</td>
<td>H</td>
<td>H</td>
<td>VH</td>
<td>(0.73, 0.87, 0.93)</td>
<td>[0.76, 0.88]</td>
</tr>
</tbody>
</table>

Tab. 7. The ratings of alternatives with respect to the nine criteria, aggregated fuzzy ratings and the left and right scores of aggregated fuzzy ratings

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Alternatives</th>
<th>DMs</th>
<th>Aggregated fuzzy number</th>
<th>Left and right scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DM 1</td>
<td>DM 2</td>
<td>DM 3</td>
</tr>
<tr>
<td>C_1</td>
<td>A_1</td>
<td>VG</td>
<td>G</td>
<td>VG</td>
</tr>
<tr>
<td></td>
<td>A_2</td>
<td>MG</td>
<td>G</td>
<td>VG</td>
</tr>
<tr>
<td></td>
<td>A_3</td>
<td>F</td>
<td>MG</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>A_4</td>
<td>F</td>
<td>F</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>A_5</td>
<td>G</td>
<td>VG</td>
<td>VG</td>
</tr>
<tr>
<td></td>
<td>A_6</td>
<td>MG</td>
<td>F</td>
<td>MG</td>
</tr>
</tbody>
</table>

	A_1	6.00	6.00	6.00	(6.00, 6.00, 6.00)	[0.20, 0.20]
	A_2	5.00	5.00	5.00	(5.00, 5.00, 5.00)	[0.40, 0.40]
	A_3	5.00	5.00	5.00	(5.00, 5.00, 5.00)	[0.40, 0.40]
	A_4	7.00	7.00	7.00	(7.00, 7.00, 7.00)	[0.00, 0.00]
	A_5	2.00	2.00	2.00	(2.00, 2.00, 2.00)	[1.00, 1.00]
	A_6	4.00	4.00	4.00	(4.00, 4.00, 4.00)	[0.60, 0.60]

C_2	A_1	MG	F	F	(4.33, 5.67, 6.67)	[0.51, 0.63]
	A_2	VG	G	VG	(7.67, 9.33, 9.67)	[0.82, 0.97]
	A_3	P	VP	VP	(0.33, 1.33, 2.33)	[0.12, 0.22]
	A_4	MP	F	MP	(2.67, 4.33, 5.33)	[0.38, 0.50]
	A_5	VP	VP	VP	(0.00, 1.00, 2.00)	[0.09, 0.19]
	A_6	G	G	VG	(7.33, 8.67, 9.33)	[0.79, 0.90]

C_3	A_1	10.00	10.00	10.00	(10.00, 10.00, 10.00)	[0.00, 0.00]
	A_2	27.00	27.00	27.00	(27.00, 27.00, 27.00)	[0.27, 0.27]
	A_3	60.00	60.00	60.00	(60.00, 60.00, 60.00)	[0.79, 0.79]
	A_4	73.00	73.00	73.00	(73.00, 73.00, 73.00)	[1.00, 1.00]
	A_5	60.00	60.00	60.00	(60.00, 60.00, 60.00)	[0.79, 0.79]
	A_6	20.00	20.00	20.00	(20.00, 20.00, 20.00)	[0.16, 0.16]

C_4	A_1	1.00	1.00	1.00	(1.00, 1.00, 1.00)	[1.00, 1.00]
	A_2	3.00	3.00	3.00	(3.00, 3.00, 3.00)	[0.71, 0.71]
	A_3	5.00	5.00	5.00	(5.00, 5.00, 5.00)	[0.43, 0.43]
	A_4	2.00	2.00	2.00	(2.00, 2.00, 2.00)	[0.86, 0.86]
	A_5	8.00	8.00	8.00	(8.00, 8.00, 8.00)	[0.00, 0.00]
	A_6	2.00	2.00	2.00	(2.00, 2.00, 2.00)	[0.86, 0.86]

| C_5 | A_1 | MP | MP | MP | (2.00, 4.00, 5.00) | [0.21, 0.35] |
| | A_2 | MG | G | G | (6.33, 7.67, 8.67) | [0.63, 0.77] |
Tab. 8. The relative closeness of each alternative to the ideal solution and the rank of each alternative

<table>
<thead>
<tr>
<th>Relative closeness to the ideal solution</th>
<th>Rank and priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>7.1942</td>
</tr>
<tr>
<td>A₂</td>
<td>7.0789</td>
</tr>
<tr>
<td>A₃</td>
<td>8.4432</td>
</tr>
<tr>
<td>A₄</td>
<td>6.4109</td>
</tr>
<tr>
<td>A₅</td>
<td>9.6641</td>
</tr>
<tr>
<td>A₆</td>
<td>6.5099</td>
</tr>
</tbody>
</table>

5. Conclusions

Multiple criteria decision making (MCDM), has widely use in the solution of real world decision making problems. By considering the fact that, in some cases, determining precisely the exact values of alternatives with respect to the criteria or / and the exact values for the weights of criteria, is difficult or impossible, so, the values of alternatives with respect to the criteria or / and the values of criteria weights are considered as fuzzy values (fuzzy numbers). Such that the conventional approaches for solving these MCDM problems tend to be less effective in dealing with the imprecise or vagueness nature of the linguistic assessment. In such conditions, the fuzzy MCDM methods are applied for solving MCDM problems with fuzzy data. In this paper, we propose a new fuzzy TOPSIS method based on left and right scores and then we apply proposed method for solving two numerical examples that the second numerical example is a real application related to the agent selection in the supply chain of an electronic company. As a result, the proposed method is practical for solving MCDM problems with fuzzy data and ranking alternatives in terms of their relative closeness to the ideal solution. Unlike many of MCDM methods, the proposed fuzzy TOPSIS method considers the decision makers (DMs) preference that is an advantage of it. Moreover, it seems that the proposed fuzzy TOPSIS method has a low computational volume and is flexible and easy to use.

It is expected that the fuzzy TOPSIS method have more potential applications in the near future.

References

is the membership function of the fuzzy set A. A fuzzy set $A = \{A(x) | x \in X\}$ is a collection of elements in a universe of information where the boundary of the set contained in the universe is ambiguous, vague and otherwise fuzzy. Each fuzzy set is specified by a membership function, which assigns to each element in the universe of discourse a value within the unit interval $[0, 1]$. The assigned value is called degree (or grade) of membership, which specifies the extent to which a given element belongs to the fuzzy set or is related to a concept. If the assigned value is 0, then the given element does not belong to the set. If the assigned value is 1, then the element totally belongs to the set. If the value lies within the interval $(0, 1)$, then the element only partially belongs to the set. Therefore, any fuzzy set can be uniquely determined by its membership function.

Let X be the universe of discourse. A fuzzy set \tilde{A} of the universe of discourse X is said to be convex if and only if for all x_1 and x_2 in X there always exists:

$$\mu_\tilde{A}(\lambda x_1 + (1-\lambda)x_2) \geq \min\{\mu_\tilde{A}(x_1), \mu_\tilde{A}(x_2)\} \quad (a1)$$

Where $\mu_\tilde{A}$ is the membership function of the fuzzy set \tilde{A} and $\lambda \in [0, 1]$. A fuzzy set \tilde{A} of the universe of discourse X is said to be normal if there exists a $x \in X$ satisfying $\mu_\tilde{A}(x) = 1$. Fuzzy numbers are special cases of fuzzy sets that are both convex and normal. A fuzzy number is a convex fuzzy set, characterized by a given interval of real numbers, each with a grade of membership between 0 and 1.

The most commonly used fuzzy numbers are triangular and trapezoidal fuzzy numbers, whose membership functions are respectively defined as

$$\mu_\tilde{A}(x) = \begin{cases} (x-a)/(b-a) & a \leq x \leq b, \\ (d-x)/(d-b) & b \leq x \leq d, \\ 0 & \text{otherwise.} \end{cases} \quad (a2)$$

$$\mu_\tilde{A}(x) = \begin{cases} 1 & 0 \leq x \leq c, \\ (d-x)/(d-c) & c \leq x \leq d, \\ 0 & \text{otherwise.} \end{cases} \quad (a3)$$

Appendix A. Fuzzy arithmetic operations

Fuzzy sets are generalizations of crisp sets and were first introduced by Zadeh [19] as a way of representing imprecise or vague notions in real world. A fuzzy set is a collection of elements in a universe of information where the boundary of the set contained in the universe is ambiguous, vague and otherwise fuzzy. Each fuzzy set is specified by a membership function, which assigns to each element in the universe of discourse a value within the unit interval $[0, 1]$. The assigned value is called degree (or grade) of membership, which specifies the extent to which a given element belongs to the fuzzy set or is related to a concept. If the assigned value is 0, then the given element does not belong to the set. If the assigned value is 1, then the element totally belongs to the set. If the value lies within the interval $(0, 1)$, then the element only partially belongs to the set. Therefore, any fuzzy set can be uniquely determined by its membership function.

Let X be the universe of discourse. A fuzzy set \tilde{A} of the universe of discourse X is said to be convex if and only if for all x_1 and x_2 in X there always exists:

$$\mu_\tilde{A}(\lambda x_1 + (1-\lambda)x_2) \geq \min\{\mu_\tilde{A}(x_1), \mu_\tilde{A}(x_2)\} \quad (a1)$$

Where $\mu_\tilde{A}$ is the membership function of the fuzzy set \tilde{A} and $\lambda \in [0, 1]$. A fuzzy set \tilde{A} of the universe of discourse X is said to be normal if there exists a $x \in X$ satisfying $\mu_\tilde{A}(x) = 1$. Fuzzy numbers are special cases of fuzzy sets that are both convex and normal. A fuzzy number is a convex fuzzy set, characterized by a given interval of real numbers, each with a grade of membership between 0 and 1.

The most commonly used fuzzy numbers are triangular and trapezoidal fuzzy numbers, whose membership functions are respectively defined as

$$\mu_\tilde{A}(x) = \begin{cases} (x-a)/(b-a) & a \leq x \leq b, \\ (d-x)/(d-b) & b \leq x \leq d, \\ 0 & \text{otherwise.} \end{cases} \quad (a2)$$

$$\mu_\tilde{A}(x) = \begin{cases} 1 & 0 \leq x \leq c, \\ (d-x)/(d-c) & c \leq x \leq d, \\ 0 & \text{otherwise.} \end{cases} \quad (a3)$$
For brevity, triangular and trapezoidal fuzzy numbers are often denoted as \((a, b, d)\) and \((a, b, c, d)\). It is obvious that triangular fuzzy numbers are special cases of trapezoidal fuzzy numbers with \(b = c\).

Let \(\bar{A} = (a_1, a_2, a_3)\) and \(\bar{B} = (b_1, b_2, b_3)\) be two positive triangular fuzzy numbers. Then basic fuzzy arithmetic operations on these fuzzy numbers are defined as:

Addition:
\[
\bar{A} + \bar{B} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)
\]

Subtraction:
\[
\bar{A} - \bar{B} = (a_1 - b_1, a_2 - b_2, a_3 - b_3)
\]

Multiplication:
\[
\bar{A} \cdot \bar{B} = (a_1b_1, a_2b_2, a_3b_3)
\]

Division:
\[
\bar{A} \div \bar{B} = \left(\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}\right)
\]

Appendix B. TOPSIS

TOPSIS (technique for order preference by similarity to an ideal solution) method is presented in Chen and Hwang [21], with reference to Hwang and Yoon [1]. The basic principle is that the chosen alternative should have the shortest distance from the ideal solution and the farthest distance from the negative-ideal solution. The TOPSIS procedure consists of the following steps:

Step 1: Calculate the normalized decision matrix. The normalized values \(\left(\frac{y_{ij}}{x_{ij}}\right)\) are calculated as:
\[
\left(\frac{y_{ij}}{x_{ij}}\right)_k = \frac{y_{ij}}{\sqrt{\sum_j y_{ij}^2}} i = 1, \ldots, n \quad j = 1, \ldots, m \quad (b1)
\]

In above formula, we consider \(y_{ij}\) as a rating of \(i\)th alternative with respect to \(j\)th criterion.

Step 2: Calculate the weighted normalized decision matrix. The weighted normalized values \(x_{ij}\) are calculated as:
\[
x_{ij} = w_j \cdot \left(\frac{y_{ij}}{x_{ij}}\right) i = 1, \ldots, n \quad j = 1, \ldots, m \quad (b2)
\]

Where \(w_j\) is the weight of the \(j\)th criterion, and \(\sum_{j=1}^{m} w_j = 1\).

Step 3: Determine the ideal and negative ideal solution.

Step 4: Calculate the separation measures, using the \(n\) dimensional Euclidean distance. The separation of each alternative from the ideal solution is given as

\[
D_i^+ = \sqrt{\sum_{j=1}^{m} (x_{ij}^+ - x_{ij})^2} i = 1, \ldots, n \quad (b4)
\]

Similarly, the separation from the negative ideal solution is given as

\[
D_i^- = \sqrt{\sum_{j=1}^{m} (x_{ij}^- - x_{ij})^2} i = 1, \ldots, n \quad (b5)
\]

Step 5: Calculate the relative closeness to the ideal solution. The relative closeness of the alternative \(A_i\) with respect to \(I^+\) is defined as

\[
(RC)_i = \frac{D_i^-}{D_i^- + D_i^+} i = 1, \ldots, n \quad (b6)
\]

Step 6: Rank and prioritize the alternatives according to their relative closeness to the ideal solution.