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COMBINATION OF GENETIC ALGORITHM WITH
LAGRANGE MULTIPLIERSFOR LOT-SIZE
DETERMINATION IN CAPACITY CONSTRAINED

MULTI-PERIOD, MULTI-PRODUCT AND
MULTI-STAGE PROBLEMS

M.Kargari, Z.Rezaee, and H.Khademi Zare

Abstract: In this paper a meta-heuristic approach has been presented to solve lot-
size determination problems in a complex multi-stage production planning problems
with production capacity constraint. This type of problems has multiple products
with sequential production processes which are manufactured in different periods to
meet customer’s demand. By determining the decision variables, machinery
production capacity and customer’s demand, an integer linear program with the
objective function of minimization of total costs of set-up, inventory and production is
achieved. In the first step, the original problem is decomposed to several sub-
problems using a heuristic approach based on the limited resource Lagrange
multiplier. Thus, each sub-problem can be solved using one of the easier methods. In
the second step, through combining the genetic algorithm with one of the
neighborhood search techniques, a new approach has been developed for the sub-
problems. In the third step, to obtain a better result, resource leveling is performed
for the smaller problems using a heuristic algorithm. Using this method, each
product’s lot-size is determined through several steps. This paper’s propositions
have been studied and verified through considerable empirical experiments.

Keywords: Production planning, Integer linear programming, Hybrid genetic

algorithm, Neighborhood search method, Resource leveling, Lagrange multiplier

1. Introduction
During the past century, production scheduling
problems have evolved significantly. Material
Requirement Planning (MRP) is an approach used in
production planning to determine parts and materials
for fina products. Following that, manufacturing
resource planning (MRP-11) and enterperacie resource
planning (ERP) have been developed based on the
hierarchical production plan. In MRP-II and ERP
methods, Master Scheduling Planning (MPS) which has
been obtained through the customer’ s predicted demand
is generalized to the smallest parts of the products using
bill of material (BOM). Despite the extensive
application of these methods, all of them are somehow
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limited. The primary problem of these systems is
ignoring the resource constraint [1].

In these systems if there are not enough resources for
production, a part of the production activity is delayed
or production plan is completed using surplus resources
required at the specified time. These delays in the
production plan may lead to non-practical programs; on
the other hand, usage of surplus resources by each
system increases the costs which are in contrast with
cost reduction objective [2].

The proposed lot-size determination approach in this
paper for multi-stage production planning problems
with production capacity constraint, the holding, set-up
and production costs has been considered. In another
word, the lot-size determination and cost minimization
objectives are considered simultaneously while the
resource constraint is regarded. The production
estimation for each part to meet customer’s demand is
performed in the production planning horizon. In multi-
stage production planning, planning for each product is
related to other products plan at the lower level.

Issue literature review indicates that production
planning has direct relation with customer demand and
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production capacity and this relationship has been
studied extensively, but no more progress has been
achieved for resources and products with uniform

distribution during the production scheduling [3, 4, 5,6].

Accordingly, most of the production planning problems
including resource constrained multi-stage production
planning problem with set-up cost are categorized as
NP-Hard problems[7].

Many solutions have been developed to solve this kind
of problems using branch-and-bound approach [8].
Solution methods for this kind of problems are divided
to optimization and heuristic approaches.

To solve these problems, the heuristic algorithms show
more effectiveness than optimization approaches [9].
However, increasing usage of computers and needs to
correct planning, finding new solutions to obtain the
low cost programs seems very crucial and inevitable.
Development of the genetic algorithm (GA) is one of
the efforts to solve this kind of problems during 1960-
1970 [10]. GA has been a successful meta-heuristic
solution [11].

GA performs well in general surveys but it is not much
quick in obtaining the final solution since it does not
perform well in neighborhood search.

However, in most cases, this method provides a final
solution. Thus, to accomplish a GA agorithm a
neighborhood search algorithm must accompany it and
a hybrid genetic algorithm is developed. GA,
Neighborhood Search (NS) hybrid approach has been
applied as an initial solution by Wang [12].

Bitran and Yanasse [13] have developed a heuristic
approach to solve multi-stage single-product production
planning problem.

When they added a second product to the problem, it
was converted to a NP-Hard problem and when they
considered a non-zero set-up time, determination of a
feasible solution for the problem was converted to a
NP-Hard problem [14].

An extensive issue literature review for lot-sizing has
been conducted by Bahl, Kuik and Simpson [15,16,17].
Researchers have developed a multiple heuristic
approach according to complexity of multi-stage
production planning problem [18,19,20,21]. Katok [22]
has extended a heuristic approach based on Harrison
and Lewis[23].

Franca [17] developed a heuristic approach consisting
four patterns based on the production transfers among
the periods.

Their agorithm starts with Wagner-Whitin initial
solution [24]. This approach typically develops a non-
practical solution.

Following that, various approaches have been proposed
to seek a practical, low cost or even a new initial
solution. We use these approaches as a basis to develop
ahybrid genetic algorithm.

Tempelmeir and Derstroff [25] extended an approach
according to Lagrange multipliers.

They also used Wagner-Whitin [241] solution as initia
solution. Then using Langrage multiplier they tried to
find a practical solution.

Other researchers aso have been using Lagrange
method to solve production planning problems and it's
efficiency in solving problems with limited resources
have been proved [24,26,27].

Ozdamar and Barbarosoglu [19] developed another
approach combining the Lagrange multiplier and
annealing simulation.

They have compared their results with the results of the
Tempelmeir and Derstroff's approach [25] but
unfortunately, their method did not show any
improvements.

As the issue literature review indicates, al of the
articles are proposed for the single product production
planning problem and no significant study has been
carried out for multi-product planning problem.

The aim of this paper is to develop a heuristic approach
according to the evolution trend of the existing
algorithms to solve the multi-stage, multi-product and
multi-period production planning problems with limited
resources and set-up and installation time and cost. We
have extended a more expertise HGA Algorithm.

In addition to a general search to find a near optimal
solution, alocal search is aso used and demonstrated to
generate random examples in production planning
problems. Local search approaches are based on the
Franca search approaches [28].

The paper has the following structure. In section 2, the
mathematical model of problem and its decomposition
algorithm to define sub-problems accompanying the
mathematical model for each product is provided. In
section 3, Franca's heuristic approach is described.
Section 5 describes the surplus resource leveling and in
section 6, the solution algorithm is described.

Section 7 refers to the experiment design using severd
examples. Finaly, in section 8 is devoted to conclusion.

2. Mathematical Maodel of the Problem

In this section we describe the model of the multi-stage,
multi-product and multi-period production planning
problem (CMLSP) with production capacity constraint.
In this problem we have n products which compete with
each other in the limited resource alocation and thus,
the production batches in each stage and period must be
determined, so all products demands at various periods
are satisfied.

decision parameters and variablesincludes:
N: Number of products i=12,...,N

T: Number of periods in production planning horizon
t=12,...,T

K: Number of stages required for each product
j=12..K

X ijt -
period ¢
1 it On hand inventory of product i in stage j and

Production lot-size of product i in stage j and

period ¢
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|1 if product i is produced in stagej at the end of periodt
710 otherwise

Al-j, : Fixed production set-up cost for product i in stage
j and period ¢

d;; - Demand for product i in period ¢

bjt : Avalilable resource in stagej and period ¢

a;; - Amount of required resource for product i in stage
j and period ¢

Hl.jt : Unit holding cost of product i in stage j and
period ¢

Sijt . Production set-up time of product i in stage j and
period ¢

M : Upper limit of the X ;;, decision variable.

ijt

it . Production cost of product i on machine j in
period t

i : Amount of product i stored in stagej at the end of
period t

Objective Function:

N M T
MinZ:ZZZ[Al'j[.Y[j[+Cijt.Xl'jt+Hij[.Jl'jt] (1)
i=1j=1=1
Constraints:
]i,m,lfl + Xi,m,l _Ii,m,t = Dit (2)

i=12..,n t=12..T

Ii,j,t—l +Xi,j,t +Xi,j+l,t (3)
i=12...,n t=12..T t=12..,m-1

z ai/'t Xi/'t + Si/'t Yi/'t S b/'t (4)
i=1

j=12,...m t=12..,T

Xijt < M'Yi/'t (5)
i=12...,n ¢=12...T j=12..m
(Xijt’]ijt) >0 (6)

i=12...,n ¢=12...T j=12..m

Y, €(0)) (7
i=12..,n t=12...T j=12..m

In this model, equation (1) represents the objective
function which minimizes the total of set-up, holding
and variable production costs. Equation (2) ensures the
demand supply in each period. Equation (3) shows that
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in a network, total of in-flows to each node (i, j, t) is
equal to out-flows from that node. Equation (4)
represents the production and set-up times required in
each stage for each product and equation (5) ensures
that set-up and installation costs are considered as the
production process begins. Finaly, equations (6,7)
represent the type of decision variables.

2-1.Primary Decomposition Algorithm
In problems with several groups of constraints and
different structures, typically, this question arises that
which one of these constraints must be considered as
decomposition factor.
To respond to this question, the following factors must
be considered [28]:
a) Proximity of the resultant solutions from the
composition algorithm to the optimal solution.
b) Facility to decompose the main problem to sub-
problems.
c) Facility to solve each sub-problem and
compose the problem solutions.
In this model, it can be seen that only constraint (4) is
in relation with al products. In the simplex problem of
this constraint, we are facing a set of Lagrange

multipliers (4 jt) which makes the objective function

to follow the constraints (2, 3, 5) and converts the
multi-product hybrid problem to » individua single
product problems.

Thizy [29] has shown that firstly Lagrange
simplification is more precise than other simplification
methods.

Secondly, Lagrange simplification of capacity
constraint in comparison to other constraints results in
the most stable lower limit toward the optimal solution.
Thirdly, applying the decomposition technique based
on the limited resource Lagrange multiplier, for multi-
stage production models simplifies the main model to n
individual problems.

To decompose the main model to » individual single-
product problems first we calculate the average
required resources in stagej using equation (8):

_1& 4o
a; :Néaii J=12m (8)

Then, we determine the bottleneck station using
equation (9):

q = Min {bl,bz,..... O } )

ap any a

If station j is considered as a bottleneck station, the
capacity alocation to products is performed according
to station j capacity consumption using equation (10):

D;.a;
R=—=1Y
Lom Jj = bottleneck station (10)
lel- -y
iz
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T
In the equation (10), D, Z%ZD& is equal to the
t=1

average consumption of product i in periods ¢ = 1, 2,
...., T based on the economic order quantity (EOQ)
concept of Wilson [30].

The average demand for each product in each period is
considered to be constant.

According to the ratio of average capacity consumption

for each product ( R;) in station (j), C;; matrix is
defined asfollows:

CiRy  CoRy - Cy Ry
|CiRy  CaRy - CyRy

m

(11)

CiR, C,R, - C,R

n m=-n

Each row of this matrix represents the allocated
capacity to each product in various stages.

2-2. Mathematical M odel of Each Product

After decomposing the main problem, the multi-stage,
multi-period  production planning model  with
production capacity constraint

follows:

decision parametersand variables
Aj, = Set-up cost of stagej and period ¢

X iF Production quantity in stage;j and period ¢

C = Variable production cost in stagej and period ¢
H = Inventory holding cost in stage / and period ¢

1 j+ = Onhand inventory cost in stage; at the end of
period ¢

bj = Available resource in stage

D, = Order quantity of the finished product in stagej
S = Set-up time of stage,
_{1 if machine iis setup in period t}
Jt

10 otherwise

Objective Function:

m T
MinZ=7"3"[A4;,.Y;;+Cj; . X, +H.1;] (12)
Jj=u=1

Constraints:
Im,t_1+Xm,t —Im’t =D,(12) t=12,...,T

]j‘t—1+Xj,t_Ij,t_Xj+1,t:O (13)
t=12,.T j=12,...m-1
Dlaj X, +8;Y;)<b] (14)

1
Xije <¥jo - bj (15)
(X;,1;)>0 (16)

1 if X:i:20

B 0 otherwise

In this model, equation (11) represents the objective
function, which seeks to minimize the sum of set-up,
holding and variable production costs.

Equation (12) ensures the supply of demand in each
period. Equation (13) shows that in a network, total of
in-flows to each node (j, ¢) is equal to out-flows from
that node. Relation (14) represents the set-up and
production times constraint required in a stage. Relation
(15) ensures that set-up and installation costs are
considered if the production process begins. Equations
(16, 17) represent the type of decision variables.

3. France sHeuristic Approach (H.)
In this section we describe Franca s heuristic approach
named (H.).
We get some of the ideas that we have obtained from
details definition in our hybrid genetic agorithm
(HGA). The main steps of this algorithm are as follows:

3-1. Initial Solution Obtaining Method (P1)

This method provides a primitive solution by repeatedly
applying the Wagner-Whitin algorithm.

Wagner-Whitin algorithm is used to determine the
optimal lot-size in multi-stage, single-product
production planning problems with production capacity
constraint. In this method first the capacity constraint is
disregarded and lot-size is determined for finished
products.

In this stage determined lot-sizes are equal to the
previous stage values. The sequence is provided for
sustainability.

After reapplying the Wagner-Whitin agorithm for m
times, an initial solution is obtained.

This solution may be non-practica because in this
model, the production capacity constraint is disregarded.
If the resultant solution is not practical, return to the
second stage; otherwise go to stage 3.

3-2. Initial Solution Estimation Method (P2)
This method starts with a non-practical initial solution.
To find a practical solution, we transfer the production
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among the periods. This technique consists of forward
progress and backward regression.

In each step, an experiment is carried out for non-
practical periods to transfer the production to other
sections.

During this transfer, maximum production capacity and
required production capacity quantities are compared.
In periods with resource shortage, production is
transferred to periods with unused capacity.

Among the possible transfers, the best transfer with the
am of cost minimization and practical solution is
selected.

These transfers are continued until the practical solution
is obtained for the investigated period.

The new non-practical periods are identified and
analyzed. Both steps are carried out until a practical
solution or a maximum number of pre-determined
iterations is obtained. If a practica solution is not
obtained using this method, the method fails.

3-3. Improvement Method (P3)

This method gets a practical solution as an input and
triesto improveit.

Cost reduction method uses the forward and backward
amounts of production transfers method.

This method in addition to leveling the resource usage,
maintains the practicality of the solutions. This method
is considered as alocal transfer.

Therefore, it begins with a practical solution and using
production transfers for adjacent periods, seeks alower-
cost practical solution.

Adjacent transfers are a set of solutions which can be
obtained through a production transfer. Transfer steps
are recurred frequently until no more improvement is
possible after a forward or backward step or maximum
number of pre-determined iterations.

Finally, this method ends with a better solution or in the
worst state, a solution with equal cost.

3-4. Incorporation Method (P4)

The solution resulted from the improvement method is
astart point for incorporation method.

In the case that no improvement is obtained by the
previous method, the solution resulted from the
estimation method is used as start point.

In this method, over-load for each product at each
period is selected and replaced with free time of
machinery in other periods. This transfer ends after N
steps. There are two different objectives for this kind of
transfer. If the initial solution is non-practical, an effort
is required to obtain a practical solution or reduce the
resource usage in those periods.

If the initial solution is practical, incorporation method
is suitable to obtain alow-cost solution.

4. Hybrid Genetic Algorithm (HGA)
Hybrid Genetic Algorithm is an extended genetic
algorithm. This agorithm is based on the population of
individuals like the rest of the genetic algorithms.
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However, this algorithm is less constrained than other
methods because there is no production planning
structure in this method. In other words, this algorithm
is designed for general production planning problems
and is only based on the product components.

Unlike the traditional methods, HGA origindly
investigates all of the related variables [31, 32]. New
solutions are obtained at each step of this agorithm
through various combinations of these populations [33].
These populations also can be used to classify the
genetic algorithm search. Now we describe the HGA

steps:

4-1. Initial Solution Representation

Each solution is obtained by a (T x 2m) matrix (m:
number of elements; 7: number of periods).

This solution consists of |ot-size and inventory for each
element in each period.

This solution may be practical or non-practical. Each
solutionisillustrated as follows:

Xy X Xiz 7 Xyp |In I his o Iy
Xog Xop Xog " Xop | Iy I Iz = Iy
Xml Xm2 Xm3 XmT lml ]m2 1m3 ImT
(18)

4-2. Fitness Function

Each solution has avalue. Thisvaueisrelated to actual
performance of the solution. Accordingly, practical and
non-practical solutions can be obtained for each
population group. A method to control impossible
solutions is to use the cost and feasibility factors
simultaneously. This method is shown in relation (19):

(19)

finess Z >0 objective function value for a practical solution
Z =0 objetive fumction value for a non — practical solution

In this solution, value of the objective function is equal
to the total cost value, if solution is practical; otherwise,
value of the objective function is equal to zero.

Thus, fitness function has two modes, one mode
represents the cost value for practical solution and the
other indicates the practicality of the solution.

4-3. Population Size and Structure

Population reported in this paper consists of m groups
The relationship between these groups is based on the
sequential production systems and has m levels. Each
group of this population consists of two sub-classes.
These two sub-classes represents production value

vector (X ) and inventory value vector ( jt):

Each of these groups stays in successive levels of the
production hierarchy. Group m is the main root of the
product tree and this forward group has a follower
group named m-1. Also, m-1 follower group is a
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forward group for group (m-2). Therefore, group m-2 is
afollower group for m-1 group.

Fig 1. Production steps diagram for each product

Product tree is expanded accordingly to the end.
According to the hierarchical structure of the product,
solution vector of each follower group is connected to
the following group solution vector.

This method transfers the follower group solutions to
the forward groups and ensures the best solutions for
the upper level elements of the product.

4-4. Initial Population

Each solution of the initial population is obtained using
Wagner-Whitin algorithms like P1 in H. heuristic
algorithm. Since this solution is non-practical, we apply
P2 agorithm after P1.

Our objective is to produce different solutions for fixed
set-up costs. These changes are randomly selected for a
value between 100 fold of the set-up cost and 0.01 of
the set-up cost.

These changes in some cases lead to high set-up costs
and in other cases lead to low set-up costs. On the other
hand, to generate more solutions, we use randomly
uniform distribution for lot-size and inventory in
allowableintervals.

These methods are studied as hybrid methods in
subsections 4-6 and 4-7. Using these methods we obtain
more solutions and also gain access to production
process leveling.

4-5. Combination

In this step, each follower group is combined with a
forward group and each combination generates a new
solution. This group of new solution is added to the
existing population.

For example, according to Figure 1; group 1 is
concluded from the combination of the follower group
1 and forward group 2 and the new solution of group 2
is achieved from the combination of the follower group
2 and forward group 3.

This process continues until the final stage in the
follower group m and amount of the demand. Since
there is only one follower group for sequentia
hierarchy structure of this sub-set, a crossover action is
generated. Because of this combination, m new groups
are abtained.

In this investigation to obtain a combination, an
algorithm is designed and experimented. New hybrid
groups are added to the initial population. However, we
notice that these hybrid groups are extremely related to
product structure.

Therefore, we consider them as a proposed solution. In
this algorithm, we start with the final elements that lie
at the lowest level of the final product and then we deal
with the highest level products.

This indicates the practicality of the solution with
respect to constraints.

4-6. Memetic Algorithm
The amount of the production and inventory for each
offspring is calculated as follows:

Xf/_;’tﬁrprmg -0, I;f/ipr[ng -—a, i a, <0 (19)
lefjxpymg _ u[a/,, Xﬁamml]’ 1;?{]&prmg _ X}(;I/]Spring —ay i 4,50
where
_ _ y offspring _ yoffspring
apy=dj—Xj 1501 (20)

Equation (20) refers to the element ; production
capacity in period 7. Production of this element in

period ¢ is not necessary if a ;; >0.
For this problem to be practical, the minimal amount of
the product j in period ¢ must be equal to a jt - (ab)

distribution function shows the uniform random
production values in (a,b). This function is used for a
variety of solutionsin the society.

Stochastic production comparison is carried out using

minimum required production values ( a@; ) and

forward group production value in the hierarchical
structure (x b L.

Then using new lot-size ( X ;?{%p”'”g ) and equation

(19), inventory (1) is determined. We continue this
action according to method P1 until the inventory and
production values are determined for al elements.

Then we start aleveling trend.

The objective of this trend is to change and update the
inventory of al elementsin periods (0-7) [34].

4-7. Wagner -Within Combination

This combination uses the Wagner-Within (WW)
algorithm. We change set-up costs randomly for some
elements and some periods according to relations (21)
and (22):

X;jm-eml =0 and X;j“"e”’z =0 lf S/t x100 (21)

X270 and XM 50 if S, /100 (22)

We use Wagner-Within algorithm for each production
stage. These set-up costs changes affect the production
cost of the next level parts estimation for other periods.
These effects refer to the production state of the upper
level partsin previous periods.

The solution generated here is a practical solution
according to (12) and (13). But it may not be a practical
solution with respect to the resource capacity constraint
(24).
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In this case we use Frank et al. leveling trend. As
described earlier, this leveling trend is used to find a
practical solution.

In case the obtained solution is practical, we use the
improvement trend. To select the elements in Wagner-
Whitin combination, u (1,m) uniform distribution is

used [24].

4-8. Mutation

Hybrid genetic algorithm sometime uses the stochastic
approaches to change the solutions regardless of the
amount of fithess.

We evaluate the fitness and consistency of the solutions
before mutation using P4 method.

After combination, we apply mutation operations in
each period with » (0,1) probability.

In this operation, m random numbers are generated
between 0 and 1 which is smaller than 0.1 for each
group. Mutation is applied according to equations (23),
(24) and (25):

X, =X, +Q1b,-X,) if X, <b, (23)
)(;'t :/\/jt 70]()(/'1 7ajr) lf /ij >bj (24)
ly=X;—a (25)

Equations (23) and (24) are used according to limited
resource and production constraints.

These new groups are also added to the initia
population.

4-9. Restart (Selection)

In this algorithm, we use restart strategy, because the
existing population shows a few of the evauated
solutions.

We implement al of the existing population solutions
and in each group a solution with minimum objective
function value is selected.

Since the obtained solution is the best solution until
now, they are similar to the initial population solutions
except that they may have better objective function
values.

To increase the number of solutions, some steps of the
H. method must be repeated. The generated values by
restart method are used when we use the return
approach.

In these experiments, restart is used 20 times.

Stop criteria in HGA could be equal to the maximum
number of the generated solutions or implementation
time constraint.

If this algorithm does not obtain a practical solution, we
will not be able to say with certainty that thisis a non-
practical problem.

Even, one solution does not ensure the practicality of
this problem. HGA implementation steps are illustrated
in Figure 2.
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4-10. Computational Results

Hybrid genetic algorithm is written with Visua Basic
programming language.

300 problems with various dimensions have been
considered for the program testing.

Domains, which have been used to generate the
examples, are provided in Table 1.

Develeping a set of
primary solutions

Defining the
Fitness function
Defining the
Product structure
Ey .
25 5§
— £F BE e
22 22
5O o
L]
Selection

Is the number
of repetition
reached to?

Selection of the best answer as the solution

Fig 2. HGA flowchart

These domains are used by Rigna [34]. In these
problems, the sequential production structure has been
used. Sequential structure means that each element has
exactly one previous and one next sample.

Number of steps in each problem and comparison
results are provided in Table (4).

In each row of Table (4) 60 test problems are generated
using distribution functions in Table (3) and objective
function values for three methods of HGA, MA and H.
have been compared.
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Table 3. Uniform distribution of the stochastic

examples
Parameter Interval
C, u(15,2)
J
Ajz For Low setup cOSt U(5,90)
A jt For high setup cost U(50,950)
H, u(0.2,0.4)
J
djt For  find items U(O,180)
d jt For no find items u(0,18)

Table 4. Comparative results of HGA method versus
MA and H.
Number | H. | MA | HGA
of steps
10 93 | 87 | 74
20 115|109 | 9.8
30 128 | 122 | 111
40 16.1 | 152 | 14.4
50 252|228 | 21.3

From the above table, it can be seen that HGA method
has lower cost in comparison with H. and MA.

5. Resource Leveling
To implement resource leveling, the surplus capacity is
calculated for each sub-problem using equation (26):

m
RC; = (b = Y Dj.aj) (26)
Jj=1

The total remaining capacity is caculated using

m
equation (gcr = D ke

j=1
This remaining capacity is distributed among sub-
problems according to the used resource capacity. In
this method, less capacity is allocated to sub-problems
with more remaining capacity and vice versa.
Resource leveling is implemented according to
equation (27) to achieve better feasible solutions:

Di aii
Bdj = rRCT—2Y

n

27
D tiaij @
i=0

Each sub-problem with the new justified capacity is
resolved using hybrid genetic algorithm.

Therefore, according to the resource capacity increase
in problems that need more capacity and resource
capacity reduction in problems that require less
capacity (resource leveling), the total cost decreases.
This operation continues until the total cost difference
between two successive steps (ATC) is less than ¢ .
¢ isdetermined according to the required accuracy.

6. Original Problem Solution Algorithm
Step 1: Decompose the original problem to » individual
problems using Lagrange multiplier in limited resource.
Step 2: Solve each sub-problem using hybrid genetic
algorithm.

Step 3: Calculate the remaining capacity of each sub-
problem with respect to the allocated capacity.

Step 4: Implement the resource leveling operation for
all total remaining capacities (TRC).

Step 5. Return to step 2 and continue until the stop
criteriais reached.

7. Design of Experiment
To evauate the proposed agorithm’s performance, 300
stochastic problems with various dimensions have been
designed. Their characteristics are as follows:
1.Problem dimensions: (N.M.T) = (3x 3x 5) up
(N.M.T) = (5x 8x 15). List of the problems are
provided in Table (3).
2.Set-up time and cost for each product in each
period are determined in random and from (0,10)
uniform distribution.
3. Inventory holding and production variable costs for
each product in each period are also determined from
(0,20) uniform distribution.
Order quantity of each product in each period is
selected randomly from (0,10) uniform distribution.
4. Machinery production capacity in each step is
randomly  determined from (15,30) uniform
distribution.
To solve the prablems above, two programs have been
written in Visual Basic environment. The first program
is written combining the genetic algorithm and
Lagrange multiplier (HGA-LR) and the second one is
written with Memetic Algorithm (MA).
The total cost and time for each method are provided in
Table (5). Comparison results demonstrate that HGA-
LR costs solves the problem in much less time, in
addition to better solutions and lower costs. This
algorithm also solves large size problems in less than
10 hours with near optimal solutions while it takes 10
hours (maximum time) to solve these problems by MA
and Lingo agorithms. The improvement obtained by
this algorithm is 25.8 percent in time reduction and 19.3
percent in cost reduction.

8. Conclusion

In this approach a meta-heuristic approach has been
developed to decompose large and complex problems
to small sub-problems based on Lagrange multipliers
and combining them with hybrid genetic algorithm to
determine the dynamic lot-size in multi-stage, multi-
product and multi-period production planning problems
with limited resources and minimizing the total of set-
up, production and inventory holding costs. This
heuristic approach starts with decomposing the main
problem to » sub-problems. After solving each sub-
problem using hybrid genetic agorithm (Genetic
Algorithm + local search), remaining capacities are
calculated and resource leveling is carried out.


https://ijiepr.iust.ac.ir/article-1-26-en.html

[ Downloaded from ijiepr.iust.ac.ir on 2025-07-16 ]

M. Kargari, Z. Rezaee, & H. Khademi Zare

27

Table 5. Comparison among HGA-LR, MA And lingo methodsresults

MA Lingo HGA-LR

Prg‘bzlsm Number Solution ti Solution ti Soluti

ution time ution time ution
(N.M.T) of Problems Solved (minute) T GeE ) (minute) T g () time (minute) Tl e )
3x3x5 5 0.45 49 0.32 45 0.22 45
3x3x10 8 0.69 84 0.59 82 0.69 71
3x3x15 10 1.58 97 1.12 91 0.89 92
3x4x5 5 212 85 245 74 1.85 84
3x4x10 8 3.82 99 314 82 295 96
3x4x15 10 5.89 135 8.15 131 711 122
3x5x5 5 14.59 235 20.28 220 11.12 219
3x5%x10 8 17.62 315 36.12 245 15.15 212
3x5x15 10 19.42 328 40.11 280 15.85 215
3x6x5 5 127.32 299 245.19 240 112.11 215
3x6x10 8 215.15 315 385.19 310 175.24 288
3x6x15 10 218.15 339 - - 215.16 315
4x3x5 5 315.16 341 485.12 321 225.84 321
4x3x10 8 319.42 483 459.18 425 252.18 418
4x3x15 10 325.42 519 - - 251.25 482
4%4x5 5 428.42 485 41151 325.12 32217 352
4x4x10 8 432.15 496 - - 324.16 480
4x4x15 10 - - _ _ 392.17 491
4x5x5 5 545.81 568 - - 412.19 542
4x5%x10 8 592.58 592 - - 431.19 594
4x5x15 10 - - _ _ 480.15 612
4x6%5 5 661.15 625 - - 482,51 1605
4x6x10 8 - - - - 511.16 594
4x6x15 10 _ - _ _ 520.82 624
5x7x5 5 - - - - 525.92 722
5x7x10 8 - - - - 548.22 748
5x7x15 10 _ _ _ _ 565.17 827
5x8x5 5 - - - - 522.19 752
5x8x10 8 - - - - 582.15 812
5x8x15 10 _ _ _ _ 592.15 915

These steps are continued until we reach the stop
criteria. Computational  results  indicate  that
composition and decomposition approach based on the
limited resource Lagrange multipliers and hybrid
genetic algorithm is a suitable solution for lot-size
determination in similar problems. Also, combination
of the composition and decomposition approaches
based on the limited resource Lagrange multipliers and
meta-heuristic approaches provides better results and
more suitable solutions in resource alocation and
resource leveling operations.
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