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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

The problem of locating distribution centers (DCs) is one of the most 

important issues in design of supply chain. In previous researches on 

this problem, each DC could supply products for all of the customers. 

But in many real word problems, DCs can only supply products for 

customers who are in a certain distance from the facility, coverage 

radius. Thus, in this paper a multi-objective integer linear 

programming (MOILP) model is proposed to locate DCs in a two-

echelon distribution system. In this problem, customers who are in the 

coverage radius of the DCs can be supplied. Moreover, we suppose 

that the coverage radius of each DC can be controlled by decision 

maker and it is a function of the amount of money invested on the DC. 

Finally, a random generated problem is used to verify the model and 

the computational results are presented. 
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11..  IInnttrroodduuccttiioonn
∗∗∗∗
  

Efficient design of supply chain is one of the most 

important issues that have received considerable 

attention. Among various type of problem in supply 

chain management, facility location problem (FLP) has 

been significantly considered. In facility location 

problem the goal is to locate a set of new facilities such 

that the cost of establishing facilities at candidate 

location and transportation cost from factories 

(producers) to distribution centers (DCs) and from DCs 

to customers (demand points) are minimized. In this 

problem, the decision maker seeks to determine the 

number of facilities, the location of the facilities, 

capacities of the facilities, allocate products to 

facilities, and the flow of products between facilities 

[1]. Early mixed-integer models to formulate this 

problem have been proposed by Baumol and Wolfe [2] 

and Kuehn and Hamburger [3]. Some researchers have 

also considered the location of producers as decision 
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variable [4], [5], [6], and [7]. Some cases have 

investigated the uncapacitated facility location problem 

(UFLP) where no limit is assigned to facilities and 

producers [8], [9], [10], [4], and [11]. On the other 

hand, in some other cases, the problem has been 

formulated as capacitated facility location problem 

(CFLP) [12], [13], [14], [6], and [15]. Maximum 

storage capacity in DCs or maximum producing 

capacity for plant centers results in CFLP. Figure1. 

Shows a two-echelon distribution system in which 

products are produced in factories and shipped to 

customers through distribution centers. Various 

elements and characteristics of facility location 

problem in supply chain have been considered in the 

literature, such as: 

••••••••  Number of products 

••••••••  Type of products 

••••••••  Planning horizon 

••••••••  Type of facilities 

••••••••  Location-allocation decisions 

••••••••  Capacity of facilities 

••••••••  Transportation channels 

••••••••  Number of echelons 

••••••••  Stochastic costs and demands  

••••••••  Transportation and facility associated risks 
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Fig. 1. A two-echelon supply chain 

 
One of the most popular facility location problems is 

the Maximal Covering Location Problem (MCLP) 

proposed by Church and ReVelle [16]. A customer is 

called a covered customer if he/she is located within a 

specified distance R, coverage radius, away from the 

closest facility. In this problem, m facilities must be 

established according to a set of candidate facility 

location sites with the objective of maximization of the 

total weight of covered customers. For more 

information about applications and solution methods 

the reader is referred to [17], [18], and [19]. The 

proposed problem is solved by linear programming 

when the optimal solution is integer and if it is not 

integer, branch and bound algorithm is used to solve 

the resulted problem [20].  

Another version of the problem was considered by 

Drezner [21] and [22] and by Watson-Gandy [23]. A 

more general family of set covering problems, of 

which MCLP is a special case, is also studied in 

Hochbaum and Pathria [24]. 

One main assumption in the Maximal Covering 

Location Problem is the fixed coverage radius of each 

facility. In other words, coverage radius is an input 

parameter to the MCLP and is not a decision variable, 

while in many real cases the physical characteristic of a 

facility may change the coverage radius of the facility. 

Berman et al. [25] investigated the covering problem 

with variable radius. They proposed a model in which 

the coverage radius of each facility is a function of 

facility establishing cost and is determined by the 

decision maker.  

This problem has real world applications such as: 

locating light posts whose illuminating strength 

depends on the intensity of each bulb, locating radio 

station that by increasing the signal power of each 

station the covering area of the station increases, and 

locating retailers such that larger retailers has greater 

coverage area. Recently, Jabalameli et al. [26] relaxed 

all of the assumption of maximal covering location 

problem and developed a MCLP which combined the 

characteristics of gradual cover models, cooperative 

cover models, and variable radius models. 

In many real world problems, distribution centers can 

only supply products for customers who are in certain 

distance (covering radius) from the DC. In addition, the 

coverage radius of each DC is related to the physical 

characteristics of that DC. Increasing the size of each 

facility, for instance, makes the coverage radius of the 

facility larger. Therefore, instead of considering a 

predefined coverage radius, it is more reasonable to 

consider available budget to locate the facilities in 

distribution system and the coverage radius of each 

facility (DC) is determined as a function of amount of 

money allocated to establish the facility. 

This paper discusses a facility location problem with 

capacitated distribution centers in a two-echelon supply 

chain including factories, distribution centers and 

customers. The problem is formulated under the 

following assumptions: 

• Each DC can supply a customer’s demand if the 

customer is located in the covering radius of the 

facility. 

• The available budget to locate the facilities is 

limited 

• The coverage radius of facility enhances by 

increasing the size of the facility. 

• The capacity of each facility is limited. 

Therefore, the goal of the problem is to determine 

the number, location and covering radius of the 

facilities to: 

• Maximize total covered demands 

• Minimize the transportation costs in the supply 

chain. 

The organization of the paper is as follows. The 

mathematical model of the problem is proposed in 

section 2. Section 3 provides the solution procedure. 

Computational example is reported in section 4 and 

finally, conclusions are discussed in section 5. 

 

2. The Mathematical Formulation 
2-1. The Proposed Mathematical Model 

Assume that I, J, and N are the set of indexes of 

factories, distribution centers and customers, 
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respectively. Following parameters and variables have 

been used to formulate the problem. 

 

Parameters: 

cij unit transportation cost from factory i to 

DC j 

cjn unit transportation cost from DC j to 

customer n 

dij distance between factory i and DC j 

djn distance between DC j and customer n 

Dn demand quantity of customer n 

Hj capacity of DC j 

Gi production capacity of factory i 

B total available budget  

Fj fixed cost of constructing afacility at 

location j 

( )j rϕ  variable cost of constructing a facility at 

location j with coverage radius r 

 

Decision Variables: 

j

1
Z

0
=





 
if a facility is located at location j 

otherwise 

jn

1
Y

0
=





 

if customer n is assigned to facility j 

otherwise 

xij amount of products transported from 

factory i to facility j 

rj 
 

the unknown coverage radius of facility 

 

It is assumed that the cost of constructing a facility 

with coverage radius 0r >  is ( )j jF rϕ+ . Variable cost 

of constructing a facility is usually assumed to be a 

non-negative, non-decreasing function of r which 

represents the cost of locating a DC with coverage 

radius r at location j. Different coverage cost functions 

have been proposed in the literature, such as 
2( )j r crϕ = , ( )j r crϕ = , and ( )j r c rϕ =  [25]. The 

coverage radius of each facility is determined 

according to the farthest assigned costumer to the 

facility [25]: 

{ }max
j jn jn

n N
r y d

∈
=

 
 

Thus, the total cost of constructing facilities is: 
 

( ( ))j j j j

j J j J

F Z rϕ
∈ ∈

+∑ ∑
 

 
Therefore, the mathematical model of the problem is as 

follows: 

 
(1) min ,ij ij ij n jn jn jn

i I j J j J n N

c d x D y c d
∈ ∈ ∈ ∈

+∑ ∑ ∑ ∑  

(2) max ,n jn

j J n N

D y
∈ ∈
∑ ∑  

(3) { }. . ( (max ))j j j jn jn
n N

j J j J

s t F Z y d Bϕ
∈

∈ ∈

+ ≤∑ ∑  

(4) ,jn n j j

n N

y D Z H j J
∈

≤ ∈∑  

(5) ,ij i

j J

x G i I
∈

≤ ∈∑  

(6) ,ij jn n

i I n N

x y D j J
∈ ∈

= ∈∑ ∑  

(7) 1 ,jn

n N

y n N
∈

≤ ∈∑  

(8) { }, 0,1 ,jn jy Z ∈  

(9) 0,ijx ≥  

In this model, the first objective function minimizes 

total cost of products transportation from factories to 

DCs and from DCs to customers while the second 

objective function is to maximize total covered 

demand. Constraint (3) ensures that the total 

establishing cost of the facilities does not exceed the 

available budget.  

Constraint (4) indicates that total transported products 

from facility j do not exceed the capacity of the 

facility. Similarly, constraint (5) represents that total 

transported products from factory i must be less than 

the production capacity of the factory. Constraint (6) 

ensures that the total amount of products enter facility j 

are equal to the total amount of products leave that 

facility; in that, the product balance equation for 

facility j.  Constraint (7) indicates that each demand 

point must be assigned to at most one facility. Finally, 

constraint (8) and (9) show the type and range of the 

variables. 

 
2-2. Linearization of the Model 

If ϕ  has a linear relation to r, non-linear constraint (3) 

could be changed to a linear constraint. By assuming 

that { }m ax
j jn jn

n N
r y d

∈
= , and adding the new 

constraint
j jn jnr d y≥ , the new form of the 

mathematical model is as follows:  
 
 

 m in ,ij ij ij n jn jn jn

i I j J j J n N

c d x D y c d
∈ ∈ ∈ ∈

+∑ ∑ ∑ ∑  

 max ,n jn

j J n N

D y
∈ ∈
∑ ∑  
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 . . ( ( ))j j j j

j J j J

s t F Z r Bϕ
∈ ∈

+ ≤∑ ∑  

 , ,j jn jnr d y j J n N≥ ∈ ∈  

 ,jn n j j

n N

y D Z H j J
∈

≤ ∈∑  

 ,
ij i

j J

x G i I
∈

≤ ∈∑  

 ,ij jn n

i I n N

x y D j J
∈ ∈

= ∈∑ ∑  

 1 ,jn

n N

y n N
∈

≤ ∈∑  

 { }, 0,1 ,jn jy Z ∈  

 , 0,ij jx r ≥  

 
3. Solution Procedure 

To solve the proposed model, bounded objective 

function method has been used. In this method, the 

single most important objective function is optimized 

and all other objectives play the role of constraints 

[27]. Thus, the second objective function which 

maximizes total covered demands forms the additional 

constraint: 
 

( )
n jn n

j J n N n N

D y Dα
∈ ∈ ∈

≥∑∑ ∑
 

 

Therefore, the single objective form of the model is as 

follow: 

 

 min ,
ij ij ij n jn jn jn

i I j J j J n N

c d x D y c d
∈ ∈ ∈ ∈

+∑∑ ∑ ∑  

 
. . ( )

n jn n

j J n N n N

s t D y Dα
∈ ∈ ∈

≥∑ ∑ ∑  

 ( ( ))j j j j

j J j J

F Z r Bϕ
∈ ∈

+ ≤∑ ∑  

 , ,j jn jnr d y j J n N≥ ∈ ∈  

 ,jn n j j

n N

y D Z H j J
∈

≤ ∈∑  

 ,ij i

j J

x G i I
∈

≤ ∈∑  

 ,ij jn n

i I n N

x y D j J
∈ ∈

= ∈∑ ∑  

 1 ,jn

n N

y n N
∈

≤ ∈∑  

 { }, 0,1 ,
jn j

y Z ∈  

 , 0,
ij j

x r ≥  

where α is the minimum percent of total demand that 

must be supplied. 

 

Tab. 1. Parameters values to generate the problem 

Parameter Value 

Dn  U(10,100) 

Fj U(3000,5000) 

( )j rϕ ( )j jr c rϕ = 

j
c U(100,300) 

Hj  U(300,500) 

{ }1 2 3, ,G G G {500,700,600} 

cij , cjn 0.5 

 

4. Computational Example 
To validate and examine the performance of the model, 

a problem consisting of 3 factories, 10 candidate 

location for DCs and 30 demand points have been 

generated. Demand quantity of each demand point is 

randomly generated between [10, 100]. Demand 

quantity of each customer is shown in Figure 2. The 

establishing cost and variable cost of each facility are 

random numbers between [3000, 5000] and [100, 300], 

respectively. Table 1.  

Briefly shows the values of each parameter. As it was 

mentioned before, we have applied the Bounded 

Objective method to solve the model. As a result, the 

second objective function was changed to constraint. 

Let us suppose that the values of α, which the decision 

maker is willing to consider are:
 

{ }0.5,0.6,0.7,0.8,0.9,1α ∈ . α=0.5, for instance, means that 

the decision maker needs half of the customers to be 

covered while when α=1, all of the customers must be 

covered.  

The problem was solved for different available budget 

sizes ( { }18000,20000,22000,24000B∈ ).We used CPLEX 

to solve the generated problem.Table 2. and Figure 3. 

show the results of the problem for different 

combinations of available budget size and coverage 

percentage. The first column of each table is the value 

of α. The second and third column gives the objective 

function values and total established DCs, respectively. 

The last column represents total number of covered 

demand points. Some facts are obvious in this table. 

For instance, by increasing the value of α, the objective 

function value (total cost of transportation) increases. 

Besides, when 18000, 1B α= = , there is no feasible 

solution for the problem; in that, when the available 

budget is 18000, it is impossible to cover all of the 

demand points. Also, in a certain level of α, by 

increasing the amount of available budget, total 

transportation cost decreases. For example, when α=1, 

transportation cost for B=20000, 22000, and 24000 are 

10172, 9610, and 9372, respectively. The decision 

maker selects the best alternative according to the 

coverage percentage (α), total amount of available 

budget size, and transportation cost. 
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Fig. 2. Network of the problem 

 
Tab. 2. Objective function value, number of constructed facilities and Total covered demands 

 
 
Figure 3 shows total cost of transportation for various 

values of coverage percentage (α) and available budget 

(B). By increasing the amount of available budget, total 

transportation cost decreases. As an illustration, Figure 

4. shows distribution details when B=20000 and α=0.9. 

 
 

 
Fig. 3. Sensitivity analysis for α and associated transportation cost in different available budget 
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Fig. 4. Details of the solution when B=20000 and α=0.9 

 

5. Conclusions 
In this paper we proposed a mathematical model to 

determine the number of facilities along with place and 

coverage radius of each facility in a two-echelon 

distribution system. In this problem, customers are 

supplied by a facility if they are in the coverage radius 

of the facility which varies according to the amount of 

investment in establishing a facility at a set of 

candidate locations. The objectives of the model were: 

1- minimization of total transportation cost, and 2- 

maximization of total covered demands. Bounded 

objective function method was used to solve the 

proposed model and the model was verified by a 

random generated problem. As an area for further 

study, the capacity of each facility may be considered 

as a variable and non-decreasing function of 

establishing cost of each facility. In other words, larger 

facilities with greater investment in construction have 

larger capacities. 
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