XML English Abstract Print


چکیده:   (182 مشاهده)
This study applies a Genetic Algorithm (GA) to optimize the Vehicle Routing Problem with Time Windows (VRPTW) for NAFTAL, Algeria’s national fuel distribution company. The model minimizes both fleet size and total travel distance while achieving high compliance (99.3%) with customer time constraints. Using operational data from the Constantine regional network one depot serving 148 service stations (149  nodes in total ), the GA achieved optimal solutions deploying 94 vehicles covering 15,415.63 km. Results demonstrated exceptional convergence stability (σ = 0.00 across 40 runs) and high computational efficiency (under 60 seconds per optimization run). Sensitivity analyses confirmed the robustness of the calibrated configuration, highlighting its reliability and scalability for real-world logistics. The proposed framework provides NAFTAL with a cost-effective, consistent, and practical decision-support tool for optimizing fuel-delivery operations. Future research will focus on integrating machine learning for demand prediction, extending the model to multi-product and heterogeneous-fleet routing, and enabling adaptive real-time optimization to support smart and sustainable logistics.
     
نوع مطالعه: پژوهشي | موضوع مقاله: زنجیره تامین و لجستیک
دریافت: 1403/9/16 | پذیرش: 1404/9/19

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb