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Abstract: A tandem automated guided vehicle (AGV) system deals with grouping 
workstations into some non-overlapping zones, and assigning exactly one AGV to 
each zone. This paper presents a new non-linear integer mathematical model to 
group n machines into N loops that minimizes both inter and intra-loop flows 
simultaneously. Due to computational difficulties of exact methods in solving our 
proposed model, a threshold accepting (TA) algorithm is proposed.  To show its 
efficiency, a number of instances generated randomly are solved by this proposed 
TA and then compared with the LINGO solver package employing the branch-and-
bound (B/B) method. The related computational results show that our proposed TA 
dominates the exact algorithm when the size of instances grows. 

 
Keywords: Tandem AGV, Machine Grouping, Mathematical Model, Threshold 
Accepting Algorithm. 

 
1. Introduction1 

Designing an efficient material handling system is a 
significant issue in the facility design. Tompkins et al. 
[1] showed that material handling costs are responsible 
for about 20 to 50 percent of the overall operational 
costs. 
Following a path, an automated guided vehicle (AGV) is 
a driverless vehicle, which transports materials within a 
manufacturing area partitioned into cells. A tandem 
AGV problem was introduced by Bozer and Srinivasan 
[2-4] that is based on the divide-and-conquer principle.  
They defined this system on a grid layout where each 
workstation is presented as a single point and may 
represent a machine, or a group of machines, such as a 
cell or a department.  
In this paper, we consider the tandem AGV problem that 
partitions a set of N workstations into several 

independent, non-overlapping, single AGV, and closed 
loops (or zones) without any overlapping, in which there 
is exactly one AGV for each loop. Unlike traditional 
systems (Fig. 1), tandem layout is a mixed system 
consisting of two-way shortest path systems and one-
way loops.  
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In such a system, all manufacturing areas are composed 
of several non-overlapping closed loops so that material 
flow in each loop is unidirectional. Additional pick-
up/delivery (P/D) stations, in which bidirectional flow is 
possible (i.e. each pair of two loops is met), are 
introduced to provide an interface between adjacent 
loops (transition points).  
It is clear that the number of required AGVs is equal to 
the total number of loops. Despite being defined and 
developed mainly for the manufacturing environment, 
tandem AGV systems can be used both in warehousing 
and manufacturing environments. Bozer and Srinivasan 
[2-3] stated the following advantages for tandem AGV 
systems: 
 
• Simplifying control in each loop because of one 

AGV in each loop. 
• Simplifying production processes in each loop. 
• Removing collisions and traffic problems. 
• Developing a group technology system. 
• Finding optimal facilities’ locations in each 

workstation. 
• Increasing flexibility due to changes both in the 

number of workstations and in the production 
planning. 
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Fig 1. A tandem AGV system 

In addition, there are some disadvantages including the 
need for handling a load by two or more vehicles, extra 
floor space, cost requirements, and the efficiency loss 
due to the transition points. In the tandem AGV system, 
workstations are partitioned in such a way that each 
station is assigned to only one loop. The workload of the 
AGVs associated with the material flow within and 
between the loops does not exceed the capacity of the 
AGV, and can be evenly distributed among all loops, if 
needed. As a building block of the system, the workload 
factor of each AGV, which is defined as the proportion 
of time the AGV is busy, either loaded or empty, should 
be calculated for each loop. 
Bozer and Srinivasan [1-2] first proposed the tandem 
AGV problem, whose design issues have been the 
subject of studies by many researchers. Bozer and 
Srinivasan [3] studied partitioning of machines into 
different zones and developed the first heuristic to 
partition stations into loops. Faraji and Batta [5] pointed 
out some advantages and disadvantages of tandem AGV 
systems. Hsieh and Sha [6] modified an approximation 
solution for the k-TSP problem and developed a new 
algorithm for partitioning machines. Huang [7] proposed 
a new concept on design of the tandem AGV that links 
the transfer points using a transportation center. Choi et 
al [8] and Ross et al [9] conducted some experiments to 
compare a tandem AGV system with a conventional 
AGV system. They compared the performance measures 
of the two systems in various conditions, such as 
production, performance of vehicles, and mean 
production times. Aarab et al [10] designed tandem 
routes in a layout using hierarchical clustering and tabu 
search (TS) methods. They were first who developed a 
meta-heuristic method for the tandem AGV problem.  
Gadmann and Velde [11] studied the problem of finding 
the best location of workstations in a loop using an AGV 
with n P/D points. Yu and Egbelu [12] presented a 
heuristic-based partitioning for the tandem AGV system 
based on the concept of variable path routing. Ventura 
and Lee [13] studied the tandem configurations with the 
possibility of using more than one AGV in each loop. 
Farling et al [14] carried out a simulation study to 
investigate the tandem configurations including the 
impact of system size, machine failure and unload/load 
time. Wooyeon and Egbelu [15] developed a partitioning 
heuristic for the problem based on variable path layout. 
They showed partitioning a tandem layout for an AGV 
system directly affects the operation of the system. Using 

simulation, they determined the location of transition 
points. Kim and Jae [16] analyzed the implementation of 
multi-load vehicles. Their algorithm has two objectives: 
1) Minimizing the maximum workload of the AGV; and 
2) minimizing the number of zones. Kim et al [17] 
proposed an analytical model in designing a tandem 
AGV system. At first, a traveling salesman problem 
(TSP) is solved to generate subsets of stations. The next 
step is to check the serviceability of the stations using 
the Markov chain model. The final tandem path is 
chosen using a partitioning algorithm. They used 
simulation to study the performance of the solution. Ho 
and Hsieh [18] considered balancing flow in each loop, 
minimizing inter-loop flow, and minimizing the distance 
of flow (i.e., the distance on which the flow has to 
travel) as three different objective functions. They first 
found a feasible solution for each loop using a heuristic 
method and then used a simulated annealing (SA) 
algorithm to improve the solution.  
Fahmy, et al. [19] proposed a two-phase algorithm for 
partitioning machines with three objectives: 1) 
Minimizing total costs of material flow; 2) minimizing 
the maximum workload; and 3) minimizing the number 
of transitions in zones. They used shortest-time-to-
travel-first (STTF) dispatching rule. They benefited from 
the simulation in demonstrating the effectiveness of their 
proposed algorithm. Shalaby, et al [20] developed the 
idea given in Fahmy, et al. [19] and proposed a two-
phase algorithm to partition machines in AGV systems. 
In the first phase, the algorithm generates zones or 
feasible solutions and evaluates them. In the second 
phase, the algorithm uses an integer mathematical model 
to choose the best possible combination of zones. 
On the path design issue of the tandem AGV, the most 
recent researches are due to Kaspi et al. [21], Ko and 
Egbelu [22], and Asef-Vaziri et al. [23] and [24]. Asef-
Vaziri and Laporte [25] provided a complete survey on 
this problem.  
According to the assumptions made by Bozer and 
Srinivasan [4], there are two types of workstations. The 
first type is the input/output station and the second type 
is the process station where the actual processing takes 
place. Transition points are considered as input/output 
(I/O) stations. When loaded, a bidirectional single load 
AGV is used in each loop and follows the shortest path 
to the destination station, and when empty it uses the 
first-encountered-first-served (FEFS) dispatching rule 
[26]. Additional assumptions are intersections and 
overlaps are avoided among loops. The number of loops 
must be at least two, which can be provided as input or 
through a design process. Solving the tandem AGV 
problem includes some sub-problems that are as follows: 
Assignment of machines into loops, decision on the 
number of required loops, and finally design of AGVs’ 
routes. Depending on these sub-problems, different 
mathematical models should be solved. After modeling 
and solving these sub-problems, their solutions are 
combined together to form the original problem. This 
paper focuses on the first two objectives. 
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In this paper, a novel mathematical model of tandem 
AGV systems that partitions machines into N loops and 
proposes a threshold accepting (TA) algorithm as a 
solution procedure for this problem was presented. This 
new mathematical model and our proposed TA are the 
major contributions of this paper. The rest of this paper 
is organized as follows.  
In Section 2, the problem and was formulated the 
notations used in the new mathematical model was 
explained. As for real life problems, due to 
computational difficulty, we could not find a good 
solution using exact algorithms in a reasonable amount 
of time, in the Section 3, a threshold accepting (TA) 
algorithm for solving the proposed model was designed. 
Section 4 contains experimental results of some 
randomly generated instances that were solved by both 
mathematical programming and the TA algorithm. 
Finally, this paper ends with the conclusion. 
 

2. A Mathematical Model 
In this section, the problem in a form of a non-linear 
mathematical model was formulated. It is worthy noting 
that the objective function was very similar to the cell 
formation problem given in [18]. Based on this idea and 
by using the dissimilarity coefficient proposed in [27], 
we presented a new non-linear mathematical model that 
determines a least cost assignment of machines to each 
loop, i.e. forms some loops with the minimum inter-loop 
and intra-loop flow. Following was the objective 
function: 
 

)}(),(),...,(2),(1{ Min Z xgxNfxfxf=                        (1) 

 
In this function, s and g(x) are singular objective 
functions in Z corresponding to intra and inter-loops, 
respectively, and N is the total number of loops. Note 
that Z is a multi-objective function, i.e. all s and 
g(x) have to be minimized where s and g(x) are as 
follows: 
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where,  is flow between machines i and k, and  
takes 1 if machine i is assigned to loop j; and 0, 
otherwise.  

ikf ijx

It is clear to see that the given problem is to minimize a 
multi-objective function Z that is very difficult in 
general. One method to solve such a hard problem is to 
convert a multi-objective function problem into a 
singular objective function problem by removing some 
terms of the objective function and adding them as 
constraints. Thus, based on the balanced loop strategy, 
we remove parts of the objective function dealing with 

intra-loop flow ( s) and put them as constraints in 
our proposed model. The reason, which we use the 
balanced loop strategy, is that the model does not allow 
us to remove a machine or some machines. If we cannot 
do that, when the model is examining the different 
assignments, it may remove a machine from a loop and 
reassigns it to another loop. Although, this seems a 
feasible solution, but it reduces the flow in the loop 
whose machine is removed currently and increases the 
inter-loop flow. To avoid this, we used the balanced loop 
strategy. This helps to equalize both inter and intra-loop 
flow, simultaneously. Another important result of using 
the balanced loop strategy is to convert the multi-
objective function Z into a singular objective function.  

)(xf j

Finally, a brief discussion about the sensitivity analysis 
and the optimal number of total loops were provided in 
the last section of the paper. Now, we introduce decision 
variables and model parameters. 

 
2.1. Decision Variables and Parameters 
We define only one decision variable, , in the 
previous part informally. The formal definition of this 
variable is given bellow:  

ijx
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The model parameters are as follows: 
ikf  Flow between machines i and k. 

if  Total flow from different machines to machine i, 

i.e.,  iff
n

k
iki ∀=∑

=

,
1

T  Total available time of AGV in the planning horizon 
in terms of time unit (total working time of AGV). 

it   Average pick-up, drop-off, and process times for 
one part on machine i in terms of time unit. 

jt′  Bottleneck time in the j-th loop. 
ηη ′,  Lower and upper flow coefficients bounds in 

each loop. 
N  Pre-defined total number of loops. 

 
2.2. Proposed Mathematical Model 
Following is the mathematical model (i.e., Model (I)) for 
the above-mentioned problem.  
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Equation (4) is the objective function that minimizes the 
total transitions between loops (inter-loop flow). This 
objective function calculates a cost incurred lj ≠ , 
clearly this means in minimizing the inter-loop flow. 
Constraint (5) guarantees each machine must be assigned 
to only one loop. Constraint (6) assumes at least two 
machines should be assigned to each loop, however 
other values are possible. Constraints (7) and (8) 
emphasize a balanced flow in each loop. In these two 
constraints, η  and η′  show the flow ranges in loops and 
they are defined as follows: 

Δ−= N/1η                                                              (12) 

Δ+=′ N/1η                                                             (13) 

where, 10
N

≤ Δ <  

In Eqs. (12) and (13),  represents the flow balance 
coefficient and is determined by the decision maker. 
Choices between small and large values for 

Δ

Δ  
correspond to more balanced and more unbalanced flow 
respectively.  
If  takes small values, the range of flow changes in 
each loop will be small and hence the flow in the loops 
are closer to each other. On the other hand, if 

Δ

Δ  takes 
large values, the flow in the loops are farther to each 
other. The choice of the upper bound for  avoids Δ η′  
being negative and the choice of lower bound is optional 
and just makes a range for  changes. Before explaining 
constraints (9) and (10), we explain the following 
lemma. 

Δ

 
Lemma 1: The capacity of each AGV to serve each loop 
has to be feasible as follows: 
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Proof: We know the time requirement in each loop 
should be less than or equal to the total available time for 
each AGV in the planning horizon, thus: 

jTxtfxtfxtf njnnjj ∀≤+++ ,...222111                          (15) 

 

It is worthy noting that in every operational process, the 
bottleneck machine or station determines the operation 
times and then it is required to calculate the process 
times based on that of bottleneck machine or station. It is 
easy to show the bottleneck time is calculated by 
constraints (9), i.e., . Furthermore, 

when xij = 1, 

)(Max ijiij xtft =′

jt ′  holds its maximum value and we can 
replace all  byii tf jt ′ , thus we have Eq. (16). 
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This is the same as Constraint (10) and the proof is 
complete. Note that if xij = 1 then according to Constraint 
(5) loops exist, in which each holds at least two 
machines, so 0≥′jt . 
Constraints (9) and (10) both test the feasibility of the 
solutions. In a case of infeasibility, the value of N has to 
be changed. Finally, the proposed mathematical model is 
a binary programming model and Constraint (11) 
imposes the binary restrictions on decision variables. 
 
2.3. A Linear Model 
The proposed mathematical model (i.e., objective 
function (4) and constraints (5) to (11)) is a non-linear 
model. As a fact, non-linear mathematical models are 
much more difficult to solve than the linear ones. 
Hopefully, it is easy to replace the non-linear objective 
function and some constraints with their corresponding 
linear ones, by using a general method in a quadratic 
assignment problem (QAP). First, we should add the 
following decision variable to our proposed model: 

klijijkl xxy = . 

Adding variable  requires some additional 
constraints (Constraints (17) to (19) given below). 
Clearly in the linear form, the objective function (4) 
changes into (4-1), we replace non-linear variables 

 with linear variable  in Constraints (4), (7), 
and (8). Also, we replace Constraints (9) with their linear 
counterparts (9-1). 

ijkly
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Model (II): 
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We call this new model with the linear constraint, Model 
(I) (i.e., objective function (4-1) with Constraints (17) to 
(19), (9-1), (10), and (20)). As it can be seen, Constraints 
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(10) are still non-linear. However, clearly Model (II) is 
much easier to solve than Model (I). As we shall see 
later in computational results section, we use this simple 
mathematical model to solve small instances to find a 
robust comparison way with the result of our proposed 
threshold accepting (TA) algorithm. 

 
3. An Efficient Meta-Heuristic Algorithm 

By looking into our mathematical model and its 
objective function, it is not difficult to see that the 
objective function is the well-known QAP model. 
According to this and also taking into account the 
constraints, it can be stated this combinatorial 
optimization problem is an NP-Hard one. We know that 
the QAP model is also an NP-Hard problem [27]. 
Difficulty of NP-Hardness has made researchers to focus 
on meta-heuristic. In this paper, we use threshold 
accepting (TA) algorithm [28] to find high quality and 
promising solutions for the above hard problem. TA is 
one of well-known meta-heuristics for obtaining good 
and near-optimal solutions to difficult optimization 
problems, which has received much attention over the 
last few years. The TA algorithm is a type of a local 
search algorithm and avoids becoming trapped in a local 
optimum by sometimes accepting a move that makes 
worse the objective function value (OFV). Simply, it 
means that the TA algorithm also accepts the worse 
solutions. Denoted by τ , the acceptance or rejection of 
a move is determined by this threshold value, which is 
decreased during the algorithm. This acceptance criterion 
implies that when algorithm begins and the threshold 
value τ  has its maximum value to avoid being trapped 
in a local optimum, large variations in the objective 
function f are more often accepted. As the algorithm 
progresses and the τ  decreases only small variation in 
the objective function f are accepted. By variation in the 
objective function, f , we mean deviation from the OFV 
that makes worse the OFV. More details about TA can 
be found in [28]. 
In fact, the TA is the deterministic variant of the 
simulated annealing (SA) algorithm. While the SA 
accepts a worst move based on a probability, the TA 
algorithm accepts the worse move based on the pre-
determined threshold. Thus, except this threshold, all 
steps are the same as the SA algorithm. To implement 
the TA algorithm, the following steps have to be 
considered: 
• Generating a feasible initial solution, 
• Defining a set of neighborhoods to produce neighbor 

solutions (i.e., local searches), 
• Setting a stopping condition, 
• Tuning the threshold value τ , 

Our proposed TA algorithm works as follows: Given an 
initial solution, it selects one of the three neighborhoods 
randomly, where neighborhoods are thoroughly 
explained later in this section, to search the solution 
space. In fact, these neighborhoods perform as local 
search algorithms. The result from applying these 
neighborhoods is the current solution or incumbent 

solution that has to be evaluated. If this incumbent 
solution is better than the best found solution so far, it 
will be accepted by the algorithm, otherwise it will be 
accepted according if its difference with the best found 
solution so far (i.e., incumbent solution does not exceed 
the threshold value τ ). The algorithm rejects the 
solution if this difference is beyond the threshold 
value,τ . This process is repeated until stopping 
condition is met. Fig. 2 shows a pseudo-code version of 
our proposed TA algorithm. 
 
Begin 
Generate an initial solution x and let it be the incumbent 
solution; 
Set 0=r  and three neighborhoods  (for k=1, 2, 
3), also initialized  and 

)(xNk

maxR τ ; 
While there is improvement Repeat 

Set k=1, i.e. search using the first neighborhood, set 
τ to its initialized value; 
For 1=r  to maxRr =  Do  

While stopping condition is not met Do 
Generate a neighbor solution of x  using the 
k-th neighborhood. Let this solution be x′ ; 
If )()( xfxf <′  ( ) for a 
minimization (maximization) problem, then 
accept 

)()( xfxf >′

x′  and let  xx ′=:
Otherwise calculate )()( xfxf −′=Δ  
( )()( xfxf ′−=Δ ) for a minimization 
(maximization) problem; 
If τ<Δ , then accept  and let x′ xx ′=: ; 

End While 
Reduce τ ; 

End For 
k=k+1; 

End 
 

Fig 2. Pseudo-code version of our proposed TA 
 
3.1. Generating a Feasible Solution 
Like every improvement local searches, the TA depends 
on the quality of an initial solution. Before generating an 
initial solution, we modify the objective function to 
satisfy all constraints. To do this, we implement the 
Lagrangian relaxation (LR) approach [29]. In this 
approach, those constraints that are difficult to be 
satisfied are removed and considered in the objective 
function with a penalty. To clarify this, let us define the 
following mathematical model with the objective 
function C and constraints gi (x)s: 
Min. C ( )
S.T.

( ) ,i i

f x

g x b i

=

≤ ∀

                                                          (21) 

Since the constraints are “less-than-equal-to” constraints, 
a penalty function given in [28] was used to put the 
constraints in the objective function: 

)}()({Min xrpxf + where,  is the penalty function 
and, 

)(xp
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Now, coincidently the problem (21) be equal to the 
problem (22), then in our mathematical model, the new 
objective function after transformation using the penalty 
function can be define as follows: 
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Objective function (23) consisting of the penalty 
functions, subject to constraints (5), (6), (9), (11), and 
(19), forms Model (III) and this model is equal to Model 
(II). Using Model (III), one can state each random 
assignment of machines to loops while considering at 
least two machines in each loop and calculating t j′  by 
constraints (7) or (7-1). This results in finding a feasible 
solution for Model (III). To generate a good initial 
solution for Model (III), we use the modified spanning 
tree (MST) concept illustrated in [11] with a little change 
as can be depicted in Fig. 3. 
 
3.2. Neighborhood Structures and Stopping Condition 
After generating an initial solution, the next step was to 
improve that solution. We did this by three 
neighborhood structures or local searches. These three 
searches were remove-insert neighborhoods and they 
differed in the way they choose a loop to remove a 
machine from it and in the way they choose a machine to 
be removed.  
The first neighborhood choosed the loop that had the 
maximum flow and the second choosed the loop that had 
the maximum number of machines. The third 
neighborhood was a probabilistic neighborhood, in 
which machines were chosen to be removed according to 
a probability proportional to the ratio of their selection in 
the two previous neighborhoods. Following is the 
definition of these three neighborhood structures, namely 
N1, N2, and N3. 

• Maximum flow remove-insert neighborhood (N1): 
Given a solution (i.e., an incumbent solution), this 
neighborhood calculates the total flow in each loop, 
finds the maximum flow, then removes a machine 
randomly from the selected loop and reassigns it to 
the loop that has the minimum flow. 

 

 
 

Fig 3. Process of generating an initial solution 
 
• Maximum machine number remove-insert 

neighborhood (N2): Given a solution, this 
neighborhood chooses a loop that has the maximum 
number of machines, removes a machine randomly 
from it and reassigns it to a loop that has the 
minimum number of machines.  

• Probabilistic remove-insert machine neighborhood 
(N3): Given a solution, this neighborhood calculates 
the probability of selecting a machine in the N1 and 
N2 neighborhoods and then chooses a machine to be 
removed from a loop according to this probability 
and reinserts it in its best position among other loops. 

Select the maximum flow 
from “from-to” table 

Assign two machines to loop i 

i < N 

Randomly select a loop 

Eliminate selected machines  

Find a machine which has the 
maximum flow with other 

machines in the loop 

Did finish 
Machines? 

i=1

Eٍnd 

To calculate  jt′

i=i+1 

No 

Yes 

No 

Yes 
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At each iteration, our proposed TA algorithm moves 
between these three neighborhoods randomly, 
implements one of them, finds an incumbent solution 
and then calculates the objective function for this 
incumbent solution. If the objective function value for 
the incumbent solution is better than the objective 
function value for the best solution found so far, the 
algorithm replaces the best found solution, otherwise the 
algorithm accepts this worsening move if deteriorated 
OFV is less than the threshold valueτ . In either case, 
the algorithm decreases theτ and goes to the next 
iteration. To terminate the algorithm, we set stopping 
criterion as the value of 0 forτ .  

 
4. Computational Results 

To demonstrate the performance of our proposed 
algorithm, we tested our algorithm on 5 problems which 
their “from-to” tables are generated randomly using 
uniform distribution between [0,10] and [0,100] 
(  and ). We use two intervals for 
generating the numbers to demonstrate the final solution 
is not dependent on some specific values.  

)10,0(~U )100,0(~U

One of the main differences between mathematical 
models and meta-heuristics lies in using the parameters. 
Usually in mathematical models, the results are less 
dependent on these parameters’ values, as mathematical 
models are considered exact methods. However due to 
high computational time, real-life problems cannot be 
solved by these exact methods.  
On the other hand, meta-heuristics are more dependent 
on those parameters since they are not exact and 
changing those parameters can affect the quality and 
time requirement of the final solution. In fact, these 
parameters guide the search towards promising 
directions. For tuning our TA only parameter,τ , we use 
some small-sized problems that are solvable by using our 
mathematical model.  
Then, we tuned the τ  in a way that the TA generates the 
best and closest solutions to the solution of our 

mathematical model. Experiments showed the initial 
value of 100 with a decreasing step of 0.1 was a good 
choice. 
Parameters for the proposed mathematical model are 
brought in Table 1. Table 2 shows the results of our 
proposed TA algorithm and the associated results of the 
LINGO solver that is an exact solver. Also in Table 2, 
readers can compare the solution by LINGO, TA 
algorithm and the SA algorithm very easily. The SA 
results are from [30].  
As can be seen by this table, in most cases our proposed 
TA algorithm has found good solutions very close to 
LINGO solver and in some cases even better than 
LINGO in much less computational time (i.e., it means 
those solutions for LINGO are not global optimal). Note 
that for small-sized problems, one can use exact solvers 
like LINGO to find the solution and for large-sized and 
real-life problems exact solvers are unable to find the 
solution either global or local optima in a reasonable 
amount of time (i.e., polynomial time). The error in 
Table 2 is calculated using the results of the LINGO 
solver and the TA algorithm.  
These small-sized problems are the proof of the accuracy 
of our mathematical model. The results obtained by the 
proposed TA algorithm are best results found in all 15 
runs. 
In Figure 5, we present the average and variance of the 
OFV for our five benchmark problems considering all 
ten runs of our proposed TA algorithm. Table 3 shows 
data for 5 medium and 15 large-sized problems. In this 
table, except problem 11 taken from [6], all other 
problems were generated randomly between [0,100] (i.e., 
U~(0,100)). Table 4 shows computational results for the 
problem instances illustrated in Table 3. 
In Table 4, we also report the computational result of the 
SA algorithm proposed in [30]. To keep the model easy, 
the value for parameter ti for problems 6 to 12 was 
chosen 1. 
 

 
Tab. 1. Parameters’ values for five instances (P: Problem, M: Number of machines, L: Number of loops) 

Parameters 
Instances η  η′  it  T  

P 1 (5M, 2L) 
P 2 (6M, 2L) 
P 3 (7M, 2L) 
P 4 (8M, 2L) 
P 5 (9M, 2L) 

0.15 
0.25 
0.2 
0.25 
0.2 

0.85 
0.75 
0.8 
0.75 
0.8 

{3,1,2,4,1} 
{1,1,1,1,1,1} 

{2,1,5,1,3,1,1} 
{2,1,5,1,3,1,1,3} 

{2,1,5,1,3,1,1,3,4} 

4000 
2000 
1000 
4000 
5000 

 
Tab. 2. Computational results of our proposed TA algorithm and LINGO 

(PC: Windows XP, RAM 1024 MB, CPU 3 GHz) 
LINGO TA SA Instances 

OFV CPU time (s) OFV CPU time (s) OFV CPU time (s) 
% Deviation 
from LINGO 

P1 
P2 
P3 
P4 
P5 

547 
552 
80 

118 
1694 

7 
35 

230 
1847 

25586 

547 
552 
80 

121 
1715 

1.45 
2 

2.8 
2.8 
3.12 

547 
573 
80 

121 
1710 

1.62 
2.12 

3 
3.31 
3.52 

0 
0 
0 

2.48 
0.94 
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Tab. 3. Parameter values (P: Problem, M: Number of 
machines, L: Number of loops) 

Parameters 
Instances η  η′  ti , 

 i∀ T  

P6 (10M, 2L) 
P7 (11M, 2L) 
P8 (12M, 3L) 
P9 (15M, 3L) 

P10 (20M, 4L) 
P11 (24M, 4L) 
P12 (30M, 5L) 
P13 (30M, 5L) 
P14 (40M, 5L) 
P15 (40M, 5L) 

0.15 
0.2 

0.09 
0.09 
0.05 
0.05 
0.02 
0.02 
0.02 
0.02 

0.85 
0.8 

0.57 
0.57 
0.45 
0.45 
0.38 
0.38 
0.38 
0.38 

1  
1  
1  
1  
1  
1  
1 
1 
1  
1 

5000 
5000 
5000 
5000 
5000 
5000 
5000 
5000 
5000 
5000 

 
In [6] by using a grouping method, problem 11 had the 
OFV of 2400, which had been improved by our TA 
algorithm to 2100 (i.e., 12.5%). Considering other 
parameters given in [6], it is clear to see that in problem 
11, the results found by our TA algorithm decreased the 
total distances of the loop. Finally, as shown in Table 4, 
the LINGO solver after 10 hours of running just 
generated feasible solutions for problems 6 and 7, and not 
even the feasible solutions for problems 8 to 15. 
However, our TA algorithm can find the local optima 
very quickly. To best of our knowledge, except problem 
11, for other instances, there are no optimal solutions or 
best found solutions yet to be able us to evaluate our 
results. 

 
Tab. 4. Computational results of the TA algorithm 

and LINGO  
(PC: Windows XP, RAM 1024 MB, CPU 3 GHz) 

TA algorithm SA algorithm 

Instances 

Best OFV 
from 

LINGO 
after 10 
hours 

OFV CPU time 
(sec.) OFV CPU time 

(sec.) 

P6 
P7 
P8 
P9 

P10 
P11 
P12 
P13 
P14 
P15 

2194 
3278 

- 
- 
- 
- 
- 
- 
- 
- 

2158 
3127 
4765 
6632 

15764 
2100 

25500 
24645 
32112 
34256 

5.45 
12 

14.5 
15.25 
19.8 
20.2 
20.5 
22 
36 

34.95 

2158 
3127 
4765 
6664 
15776 
2100 
25598 
24640 
32220 
35008 

5.81 
12.81 
15.79 
17.23 
20.16 
20.28 
21.35 
24.56 
42.44 
45.35 

However, by five previous small-sized problems as well 
as problem 11, we can conclude the effectiveness and 
robustness of our proposed TA algorithm. 
Throughout the paper, we assume that the value for N 
(i.e., the total number of loops) is known in advance. 
However, finding its optimum value can be attained in a 
simple way: the idea is to solve the problem instances by 
using mathematical Mode (l) and in case of large-sizes or 
real-life instances by using the TA algorithm, for 
different values of N and then choose the value of N for 
which the objective function is minimum or optima. 

 
5. Conclusion 

In this paper, we have proposed a novel, non-linear 
mathematical model to partition machines into loops in 
tandem AGV systems.  
This proposed model has bi-objectives minimizing inter 
and intra-loop flows. The purpose of introducing the 
nonlinear model is to formulate the problem based on its 
nature; however, since it is so difficult to solve this non-
linear model, by converting the non-linear objective 
function and some constraints into linear ones, it is going 
to be easier to solve the model.  
However, due to the complexity of our new mathematical 
model, namely Model (II), a threshold accepting (TA) 
algorithm has been developed and implemented to solve 
the given problems.  
Using different problem instances, we have compared the 
computational results based on both our proposed TA 
algorithm and the LINGO solver, as a well-known 
optimization solver. These results show the high 
convergence rate of our proposed TA algorithm and     
also high quality solutions. For future research,          
using other meta-heuristics can be proposed. Also 
developing other powerful neighborhood structures to be 
chosen in a systematic and structured way (e.g., variable 
neighborhood search (VNS) algorithm) can be considered 
for further research. 
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