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Abstract: LetR  be a commutative ring and M  be a unitary R− module. We define 
a semiprime submodule of a module and consider various properties of it. Also we 
define semi-radical of a submodule of a module and give a number of its 
properties. We define modules which satisfy the semi-radical formula 
( ). . . .s t s r f and present the existence of such a module. 

 
Keywords: Prime sub module, semiprime sub module, radical and semi- radical of 
a module, modules satisfying the semi-radical formula. 

  

1. Introduction1 
ln this paper all the rings are commutative with identity 
and all the modules are unitary. Let R  be a ring and 
M  be an R − module. If N  is a submodule of M  we 

use the notation MN ≤ . If the submodule N  is 

generated by a subset S  of M , we write SN = .  

If N  and K  are sub modules of M , then the set  
{ }rKr R N⊆∈  is denoted by ( ):

R
N K  or simply 

by ( ):N K which is clearly an ideal of R. If I  is an 

ideal of the ring R , we write RI� . In Section 2 we 

define prime and primary sub modules of an 
R − module M  and in Lemma 2.2, we give equivalent 
definitions for prime and primary sub modules. Then we 
present our essential definition, that is, we define 
semiprime sub modules of a module. Various properties 
of semiprime sub modules are discussed. We have 
shown that if N  is a semiprime submodule of an 
R − module M , then ( ):N M is a semiprime ideal 

of R  but not conversely in general. In Lemma 2.8 we 
prove that the converse is also true if M  is a 
multiplication module. In Section 3 we define radical of 
an R − module M  and Theorem 3.1, shows that a 
submodule of a finitely generated multiplication module 
is semiprime if and only if it is radical. Next we define 
semi-radical of a submodule of a module and also 
modules satisfying the semi-radical formula which is 
abbreviated as (s.t.s.r.f) and in Theorem 3.9 we show 
that such a module does exist.  
Theorem 3.12 is concerned with a number of properties 
of semi-radical of sub modules. After defining a 
P − semiprime submodule we consider some of its 
properties. 
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2. Some Elementary Results 
We begin this section with the following definitions: 
 
Definition 2.1. Let N  be a proper submodule of an 
R − module M . 
(a) N  is called a prime submodule  of M  if for any 

Rr ∈  and Mm ∈ , Nrm ∈  implies that Nm ∈  or 
( : )r N M∈ . 

(b) N  is called a primary submodule of M  if for 

any Rr ∈  and  Mm ∈ , Nrm∈  implies that Nm ∈  
or ( : )n

r N M∈  for some positive integer n . 

In (a) it can easily be shown that ( : )P N M= is a 

prime ideal of R  and we say that N  is P − prime. 
We recall that if I  is an ideal of a ring R , then the 

radical of I , denoted by I , is defined as the 
intersection of all prime ideals containing I . 
Alternatively, we define the radical of I  as : 

{ }ninteger  positive somefor IrRrI n ∈∈= . 

Also if N  is a primary submodule of an R − module 
M , then ( ):N M  is a primary ideal of R  and 

( : )P N M=  is a prime ideal. We describe this 

situation by saying that N  is P − primary. 
 
Lemma 2.2. Let N  be a proper submodule of an 
R − module M . 
(i) N  is a prime submodule of M  if and only if 

NID ⊆  (with I  an ideal of R  and D  a submodule 
of M ) implies that ND ⊆  or ( : )I N M⊆ . 

(ii) N  is a primary submodule of M  if and only if for 
every finitely generated ideal I  of R  and any 
submodule D  of M , NID ⊆  implies that ND ⊆  or 

( : )n

I N M⊆  for some positive integer n . 

(iii) Let P  be a prime ideal of R , than N  is a 
P − primary submodule of M  if and only if (a) 
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( : )P N M⊆ , and (b) cm N∉  for all PRc /∈ , 

NMm /∈ . 

Proof. (i) )(⇒ : Let RI�  and MD ≤  be such that 

NID ⊆  and let ND⊄ . So there exists an element 

NDx \∈ . Let r be any element of I .Then Nrx ∈  
and hence ( : )r N M∈ . Therefore ( : )I N M⊆ . 

)(⇐ : Let Rr ∈ , Ma ∈ be such that Nra ∈  and 

let Na ∉ . By taking:  

)(rI =  and RaD =  we see that NID ⊆ . But 

ND⊄  and hence ( : )I N M⊆ ,  

which implies that ( : )r N M∈ . Therefore N  is a 

prime submodule of M . 
(ii) )(⇒ : Let MD ≤  and I  be a finitely generated 

ideal of R  such that NID ⊆ . 

Then by [5, Corollary 1, P.99], ND ⊆  or 

( : )I N M⊆ . Let ND⊄ , then ( : )I N M⊆  and by 

[5, Proposition 8. P.83], there exists a positive integer 
n  such that ( : )n

I N M⊆ . 

)(⇐ :Let MxRr ∈∈ , be such that Nrx ∈  and let 

Nx ∉ . By taking )(rI =  and RxD =  we see that 

NID ⊆  and ND⊄ . So there exists a positive 

integer n  such that ( : )n

I N M⊆ . This implies that 

( : )n

r N M∈  and hence N  is a primary submodule 

of M . 
(iii) )(⇒ : If N  is P −primary, then by definition 

( : )P N M= . Now let PRc \∈  and NMm \∈ . 

Let Ncm ∈ , then there exists a positive integer n  
such that: 

( : )n

c N M∈ , that is, ( : )c N M P∈ =  (because 

Nm ∉ ), a contradiction. Hence Ncm ∉ . 

)(⇐ : Assume that (a), (b) hold. Let Rr ∈  and 

Mm ∈ , Nrm ∈ . Assume further that Nm ∉ , then 
by (b), r  must belong to P and so ( : )r N M∈  by 

(a). Therefore N  is a primary submodule of M . Next 
we must show that ( : )P N M= .  

Let ( : )r N M∈ , then ( : )n

r N M∈  for some 

positive integer n , and so NMr n ⊆ . Since N  is 

proper, there exist NMx /∈ . Now Nxr n ∈  and Nx ∉  

so by (b) we conclude that Pr n ∈  and, as P  is prime, 
Pr ∈ . We find that ( : )N M P=  and therefore N  is 

P − primary. 
The following definition is essential in the rest of the 
paper. 
 
Definition 2.3. A proper submodule N  of an 
R − module M  is said to be semiprime  in M , if 

for every ideal I  of R  and every submodule K  of 
M , NKI ⊆2  implies that NIK ⊆ . Note that since the 

ring R  is an R − module by itself, a proper ideal I  of 
R  is semiprime if for every ideals J  and K  of R ,  

IKJ ⊆2  implies that IJK ⊆ . 
 
Proposition 2.4. Let M  be an R − module. 
(i) If N  is a prime submodule of M , then N  is 
semiprime. 
(ii) If N  is a semiprime submodule of M , then 
( ):N M is semiprime ideal of R . 

Proof. (i) Let RI� , MK ≤ and MKI ⊆2 . Then 

NIKI ⊆)(  and since N  is prime, ( : )I N M⊆  or 

NIK ⊆ . But ( : ) ( : )N M N K⊆  and hence 

( : )I N K⊆ , and so NIK ⊆ . In any case we see that 

NIK ⊆ , and therefore N  is semiprime. 

(ii) Let J  and K  be ideals of R  and 
2 ( : )J K N M⊆ . Hence NMKJ ⊆)( 2 , and so, 

NKMJ ⊆)(2 . But MKM ≤ , and N  is semiprime, 

therefore NKMJ ⊆)( , and thus, NMJK ⊆)( . 

Hence ( : )JK N M⊆  and we conclude that ( ):N M is 

a semiprime ideal of R . 
Part (i) of the above proposition implies that if P  is a 
prime ideal of R  then P  is semiprime. In the next 
example we show that the converse of part (ii) of 
Proposition 2.1. is not valid in general. 
 
Example 2.5. Let ZR = , M Z Z= ⊕  and )0.9(=B . 

Then it is clear that ( ) ( ): 0B M = .Since Z  is an 

integral domain, ( ) ( ): 0B M = is a prime ideal and 

hence a semiprime ideal of Z . But B  is not a 
semiprime submodule of M ; because if we take 

( )3I = and ( )2,0K =< > , Then: 

{ }ZqqKI ∈= )0,18(2             (1) 
 

But: 

{ }ZqqIK ∈= )0,6(                  (2) 
 

is not a subset of B . 
It is clear that if N  is a semiprime submodule of an 
R − module M  and RI� , MK≤  be such that 

NKI n ⊆  for some positive integer n , then NIK ⊆ . 
 

Theorem 2.6. Let N  be a proper submodule of an 
R − module M . Then the following statements are 
equivalent: 
(i) N  is semiprime. 

(ii) Whenever Nmrt ∈  for some Rr ∈ , Mm ∈  and 
+∈Zt , then Nrm ∈ . 
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Proof. (i) )(⇒  (ii). Let Nmrt ∈  where Rr ∈ , 

Mm ∈  and +∈Zt . Taking )(rI =  and  )(mK =  we 

have NKI t ⊆  and so NIK ⊆  winch implies that 

Nrm ∈ .  

(ii) ⇒ (i). Let RI�  and MK ≤  be such that 

NKI ⊆2 . Consider the set:  
 

{ }KaIrraS ∈∈= ,              (3) 
 

Then for every ,r I a K∈ ∈  we have NKIar ⊆∈ 22  and 

hence Nra ∈ . This implies that NS ⊆  and since 

IK  is the submodule of M  generated by S , we 

must have NIK ⊆ . Therefore N  is semiprime. 
 
Definition 2.7. An R − module M  is said to be a 
multiplication module if for each submodule N  of 
M , N IM= for some ideal I  of R . 
It can he easily shown that, an R − module M  is a 
multiplication module if and only if  ( ):N N M M=  

for every submodule N  of M . 
 
Lemma 2.8. Let M  be a multiplication R − module. 
Then a submodule N  of M  is semiprime if and only 
if ( ):N M is a semiprime ideal of R . 

Proof. )(⇒: This is clear from Proposition 2.4 (ii). 

( ⇐  ): Let RI� , MK ≤ , be such that NKI ⊆2 . 

Hence: 
 

2( : ) ( : )I K M N M⊆ .            (4) 

It can be shown that: 
2 2( : ) ( : )I K M I K M⊆              (5) 

and so we obtain: 
2( : ) ( : )I K M M N M⊆ .            (6) 

 
But ( ):N M is a semiprime ideal of R  and hence 

( : ) ( : )I K M N M⊆ . Thus we conclude that: 

 
( : ) ( : ) ,I K M M N M M⊆            (7) 

 

and using the fact that M  is a multiplication 
R − module we have NIK ⊆ . Therefore N  is a 

semiprime submodule of M . 
The following lemma shows that the same situation, as 
above, holds for prime and primary sub modules. 
 
Lemma 2.9. Let M  be a multiplication R − module. 
Then: 
(a) A submodule N  of M  is prime if and only if 

( ):N M is a prime ideal of R . 

(b) A submodule N  of M  is primary if and only if 

( ):N M is a primary ideal of R . 

Proof. (a) ( )⇒ : Clear. 

( ⇐  ): Let RI� , MD ≤  be such that NID ⊆ , then 

( : ) ( : )ID M N M⊆ . But ( : ) ( : )I D M ID M⊆  and so 

( : ) ( : )I D M N M⊆ . Since ( ):N M is a prime: 

ideal of R  we have ( : )I N M⊆  or ( : ) ( : )D M N M⊆ . 

Suppose that ( : )I N M⊄ . Then ( : ) ( : )D M N M⊆  

and from tins we have ( : ) ( : )D M M N M M⊆ , that is, 

ND ⊆ . Hence N  is a prime submodule of M  by 
Lemma 2.2 (i). 
(b)( ⇒ ):Clear. 
( ⇐ ): Let ( ):N M be a primary ideal of R . Let I  be a 

finitely generated ideal of R  and D  be a submodule 
of M  and let NID ⊆ . Suppose that for any positive 
integer n , ( : )n

I N M⊄ . We see that NID ⊆  implies 

( : ) ( : )ID M N M⊆  and hence ( : ) ( : )I D M N M⊆ . But 

( : )n

I N M⊄ for any positive integer n , so 

( : ) ( : )D M N M⊆ , because ( ):N M is a primary. 

Hence ( : ) ( : )D M M N M M⊆  , that is, ND⊆ . So 

N  is a primary submodule of M , by Lemma 2.2 (ii). 
the proof is now complete. 
 
Proposition 2.10. Let { } IiiP ∈  be a non-empty family 

of semiprime sub modules of an R − module M . 

Then iPP ∩=  is a semiprime submodule of M . 

Further if { } IiiP ∈  is totally ordered (by inclusion), 

then iPT ∩=  is also a semiprime submodule 

whenever MT ≠ . 

Proof. Let RI�  and MK ≤  be such that 

iPPkI ∩=⊆2 . Then iPkI ⊆2  for every Ii ∈ , and 

since 
i

P  is semiprime we have iPIk ⊆ . Hence 

PPIK i =⊆ ∩  and P  is semiprime. Next we let 

MPT i ≠= ∩ . The fact that { } IiiP ∈ is totally ordered 

by inclusion makes it clear that T  is a submodule of 

M . Let RI�  and MK ≤  be such that TKI ⊆2 . 

Consider the set: 
 

{ }KkRrrkS ∈∈= ,           (8) 
 

Then S  is a generating set for the submodule IK . If 

Ir ∈ , Kk ∈  then TKIkr ⊆∈ 22 and so for some 

iPkrIi ∈∈ 2, . Since iP  is semiprime this implies 

that iPrk ∈ . It follows that TS ⊆ and hence 

TSIK ⊆= . Therefore T  is also a semiprime 

submodule of M. 
 
Remark. Some authors define a semiprime submodule 
as an intersection of prime sub modules. But by our 
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definition of a semiprime submodule of a module we 
can find a semiprime submodule of a module which is 
not an intersection of prime sub modules. for example 
look at .J. Jenkins and P.F. Smith in the proof of [1]. 

 
3. Radicals and Semi-Radicals 

Let M  be an R − module and N  a submodule of 
M . If there exists a prime submodule of M  which 
contain N , then the intersection of all prime sub 
modules containing N , is called the M − radical of 

M  and is denoted by 
M

rad N , or simply by radN . 

If there is no prime submodule containing N , then we 
define 

M
rad N M= ; in particular 

M
rad M M= . An 

ideal I  of a ring R  is called a radical ideal if 

II = . Similarly, we say that a submodule B  of an 
R − module M  is a radical submodule if radB B= . 
It is easy to see that an ideal I of a ring R  is semiprime 
if and only if it is radical. Because, let I  be semiprime, 

and let Ix ∈ . Then Ixk ∈  for some positive 

integer k . So Ixk ∈1. , and since I  is semiprime we 

have Ixx ∈=1. . Therefore II = .  

On the other hand, if II =  then by definition of 

I  and Propositions 2.4 (i) and 2.10, I  is semiprime. 
Finally by Propositions 2.4 (i)and 2.10 we see that for 
any submodule B  of an R − module M , radB  is a 
semiprime submodule whenever MradB ≠ . 
 
Theorem 3.1. Let M  be a finitely generated 
multiplication R − module and let N  be a proper 
submodule of M . Then N  is semiprime if and only if 
it is radical. 
Proof. Since ( ) ( : )

R
ann M N M⊆ , by [2, Theorem 3, 

P.216], 
 
( : ) ( : )N M M rad N M M= .           (9) 

 
As M  is a multiplication module we have 
( ):N M M M= , and if N  is semiprime, 

( ):N M is a radical ideal. Therefore 

( : ) ( : )N M M rad N M M= iff 

( : ) ( : )N M M rad N M M= . If N radN=  

this implies that N  is a radical submodule of M , that 
is, PPradNN (∩==  is a prime submodule of M  

containing N ). Hence by Propositions 2.4 (1) and 2.10 
N  is a semiprime submodule of M . The proof is now 
complete. 
After Remark 2.11 we may ask under what condition a 
semiprime submodule is the intersection of prime 
submoclules containing it. The following corollary can 
be considered as an answer. 

Corollary 3.2. Let M  be a finitely generated 
multiplication R − module and let N  be a proper 
submodule of M . Then N  is semiprime if and only if 

PN ∩=  (
i

P  a prime submodule of M  containing 

N ). 
Proof. ( )⇒ : If N  is semiprime then by Theorem 3.1, 

it is radical, that is, PN ∩= (
i

P  a prime submodule 

of M  containing N ). 
( )⇐ :By Propositions 2.4 (i) and 2.10, N  is 
semiprime. 

 
Proposition 3.3. If M  is a finitely generated 
R − module, then every proper submodule of M  is 
contained in a semiprime sub module. 
Proof. By Corollary of [3, Proposition 4, P.63], every 
proper submodule of M  is contained in a prime 
submodule . So by Proposition 2.4 (i), we have the 
result. 
 
Definition 3.4. (1) A semiprime submodule P  of an 
R − module M  is called a minimal semiprime  of a 

proper submodule N  if PN ⊆  and there is no 
smaller semiprime submodule with this property. 
(2) A minimal semiprime of 0 0

M
=< > is called a 

minimal semiprime submodule of M . 
 
Theorem 3.5. Let M  be an R − module. If a 
submodule N  of M  is contained in a semiprime 
submodule P , then P  contains a minimal semiprime 
submodule of N . 
Proof. It is similar to the proof of [5, Theorem 4. P.84]. 
 
Proposition 3.6. Every proper submodule of a finitely 
generated R − module M  possesses at least one 
minimal semiprime submodule of M . 
Proof. Let N  be a proper submodule of M , then by 
Proposition 3.3, N  is contained in a semiprime 
submodule of M . 
 
Corollary 3.7. Every semiprime submodule of an 
R − module M  contains at least one minimal 
semiprime submodule of M . 
Proof. Let P  be a semiprime submodule of M  and 
take 0N =< > in the Theorem 3.5. Then P  contains 

a minimal semiprime submodule of 0 ,< > and so a 

minimal semiprime submodule of M . 
 
Definition 3.8. Let M  be an R − module and 

MN ≤ . If there exists a semiprime submodule 
ofM which contains N , then the intersection of all 
semiprime sub modules containing N  is called the 
semi�radical  of N  and is denoted by NradS M− , or 

simply by radNS − . If there is no semiprime 
submodule containing N . then we define 
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MradNS =− , in particular MradMS =− . We call 

0radS −  the semiprime radical of M . 

If MN ≤ , then the envelope of N , denoted by 
( )E N , is defined as: 

 

,
n

x M x ra for some r R a M
E N

and r a N for some n +

⎧ ⎫∈ = ∈ ∈⎪ ⎪= ⎨ ⎬
∈ ∈⎪ ⎪⎩ ⎭�

(10) 

 
We say that M satisfies the semi-radical formula, M  
(s.t.s.r.f) if for any N M≤ , the semi-radical of N  is 
equal to the submodule generated by its envelope, that 
is, )(NEradNS =− . We already know that 

radNNE ⊆)( , by [4, P.1815]. Now let )(NEx ∈  

and P be a semiprime submodule of M  containing 
N . Then x ra=  for some MaRr ∈∈ ,  and for 

positive integer Narn n ∈, . But Par n ∈  and since 

P  is semiprime we have Pra ∈ . Hence ( )E N P⊆ . 

We conclude that ( )E N P⊆ ∩  (P  is a semiprime 

submodule containing N ). So ( )E N S radN⊆ − . On 

the other hand, since every prime submodule of M  is 
clearly semiprime, we have radNradNS ⊆− . We see  
that: 
 

( )E N S radN radN⊆ − ⊆                            (11) 

 
Now we present an R − module which satisfies the 
semi-radical formula. 
 
Theorem 3.9. Let M  be a finitely generated 
multiplication R − module. Then M  satisfied the 
semi-radical formula. 
 
Proof. Let MN ≤ , then by [4. Theorem 4.4], we have 
( ( ) : ) ( : )E N M radN M= .  

Hence ( ( ) : ) ( : )E N M M radN M M=  and since 

M  is a multiplication R − module, radNNE =)( . 

Next from (*) we have: 
 
( ( ) : ) ( : )

( : )

E N M M S radN M M

radN M M

⊆ − ⊆
               (12) 

 

that is, 

radNradNSNE ⊆−⊆)(( .        (13) 

Thus we find that )(NEradNS =− . 
 
Remark. Under the conditions of Theorem 3.9, we see 
that for any submodule MN ≠  of M  we always have 
RadN S RadN= − . 
 
Proposition 3.10. Let M  be a finitely generated 
R − module. Then the semi-radical of a proper 

submodule N  of M  is the intersection of its minimal 
semiprime sub modules. 
Proof. This is clear by using Theorem 3.5 and 
Proposition 3.6. 
For the rest of this section we state and prove some 
properties of semi-radical of sub modules. 
 
Theorem 3.11. Let B  and C  be sub modules of an 
R − module M . Then , 
(1) .radBSB −⊆  
(2) ,)( radBSradBSradS −=−−  

(3) ( ) ,S rad B C S radB S radC− ⊆ − −∩ ∩ and we have 

the equality when for every semiprime submodule P , 
B C P∩ ⊆  implies that ,PCPorB ⊆⊆  

(4) ),()( radCSradBSradSCBradS −+−−=+−  

(5) ),:():( MradBSMB −⊆  

(6) If M  is finitely generated, then MradBS =−  if 
and only if B M= , 
(7) If M  is finitely generated, then B C M+ =  if and 
only if S RadB S RadC M− + − = , 

(8) MIradSMradIS −=−  for every ideal I of R . 

Proof. (1) clear. 
(2) Since S RadB−  is semiprime by Proposition 
2.10, we have: 
 

( )S Rad S RadB S RadB− − = − .        (14) 

 
(3) Let P  be a semiprime submodule of M  such that 

PB ⊆ , so B C P⊆∩  and hence 

( )S rad B C P− ⊆∩ . But P  is arbitrary, therefore 

( )S rad B C S radB− ⊆ −∩ . By a similar argument we 

have ( )S rad B C S radC− ⊆ −∩ . Now let P  be a 

semiprime submodule of M  such that B C P⊆∩  

and assume that PB ⊆ . Then PradBS ⊆−  and so 

.S radB S radC P− − ⊆∩  Since P  is arbitrary this 
implies that ( )S radB S radC S rad B C− − ⊆ −∩ ∩  

and hence we have the equality. 
(4) Let P  be a semiprime submodule of M  such that 

.)( PradCSradBS ⊆−+−  So PradBS ⊆−  and 

PradCS ⊆− . Hence CB⊆  and PC ⊆  which 
implies PCB ⊆+ . Therefore PCBradS ⊆+− )( . 

But P  is chosen arbitrary, so: 
 

).()( radCSradBSradSCBradS −+−−⊆+−  (15) 
 

Now suppose that P  be a semiprime submodule such 
that PCB ⊆+ . So PB ⊆ , and PC ⊆ . Hence 

PradBS ⊆−  and PradCS ⊆−  and therefore 

.PradCSradBS ⊆−+−  
But PradCSradBSradS ⊆−+−− )(  and we 

conclude that: 
( ) ( ).S rad S radB S radC S rad B C− − + − ⊆ − +   (16) 
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(5) If S radB M− = , then we have the result. So let 
P  be a semiprime submodule of M  such that 
B P⊆ . So ):():( MPMB ⊆ . We know that 

( ):P M  is a semiprime ideal of R  and we have 

shown that ( : ) ( : )P M P M= . Hence 

( : ) ( : ) ( : )B M P M P M⊆ =  implies that: 

( : ) ( : ) ,B M M P M P P⊆ ⊆  

and since P  can be any semiprime submodule of M  
containing B , we have ( ):B M M S radB⊆ − , 

that is, ( ) ( ): :B M M S radM M⊆ − . 

(6) If B M= , then S radB S radM M− = − = . 

Conversely, let S radB M− = , but MB ≠ . Since 
M  is finitely generated. it contains a prime and so a 
semiprime submodule P  containing B , by Corollary 
after Proposition 4 of [3]. Hence S radB M− ≠ , a 
contradiction. 
(7) Using parts (4) and (6) we have: 
B C M+ =  iff ( )S rad B C M− + =  

iff ( )S rad S radB S radC M− − + − =   

iff S radB S radC M− + − = . 
(8) If M  has no semiprime submodule containing 
IM , then S radIM M− = and we have: 

 

⊆ ⇒ ⊆ ⇒ − ⊆ −

⇒ ⊆ − ⇒ = −

= −

:

.

I I IM I M S radIM S rad I M

M S rad I M M S rad I M

S radIM

 (17) 

 

Now let P  he a semiprime submodule of M  such that 
IM P⊆ ,so ( ) ( ): :I IM M P M⊆ ⊆  and since 

( ):P M  is semiprime ( ) ( ): :I P M P M⊆ = . 

So I M P⊆  and hence S rad I M P− ⊆ . Since 

P  is arbitrary we have: 
S rad I M S radIM− ⊆ − .  

Therefore S radIM S rad I M− = − . The proof is 
now complete. 
 

Corollary 3.12. Let M  be an R − module and I  an 

ideal of R . Then n

S radI M S radM− = −  for 
every positive integer n . 

Proof. We know that II n = . so by part (8) of 
Theorem 3.11: 

.

n n

S radI M S rad I M

S rad I M S radIM

− = − =

− = −
                                (18) 

 

Proposition 3.13. Let Q  be a P − primary submodule 

of an R − module A . Then ( ).S radQ S rad Q PA− = − +  

Proof. We have Q Q PA⊆ + , so 

( )S radQ S rad Q PA− ⊆ − + .Let 
i I iS rad Q P∈− =∩ , where 

any iP  is a semiprime submodule of A  containing Q . 

We see that  

( ) ( ) ( ): : :
i i

P Q A P A P A= ⊆ =              (19) 

 

implies iPPA ⊆ . So ( )
i

Q PA P+ ⊆ , for every Ii ∈  

and hence ( )
i

S rad Q PA P− + ⊆ . Therefore 

( )
i

S rad Q PA P− + ⊆ ∩  and so ( )S radQ S rad Q PA− = − + . 

 
Definition 3.14. Let N  be a semiprime submodule of 
an R − module M , and let ( ) ( ): :P N M N M= = . 

We call N a P  semiprime submodule of M , if P  is 
prime ideal of R . 

 
Lemma 3.15. Let M  be a finitely generated 
R − module and let K  be a maximal ideal of R . If Q  

is a K − primary submodule of M , then S radQ− is a 

K − semiprime sub module. 
Proof. By Theorem 3.11, part (5), we have 

( ) ( ): :K Q M S radQ M= ⊆ − . 

But K  is a maximal ideal of R , 
so ( ):S radQ M R− = or ( ):S radQ M K− = . If 

( ):S radQ M R− =  then S radQ M− =  and by 

Theorem 3.11, part (6) we have Q M= which is a 

contradiction since Q  is primary. Hence 

( ):S radQ M K− = and since S radQ−  is an 

intersection of semiprime sub modules containing Q  it 

is semiprime and in fact K − semiprime. 

 
Proposition 3.16. Let tNNN ,....,, 21 , be 

P − semiprime sub modules of an R − module M . 
Then 

1 2
...

t
N N N N= ∩ ∩ ∩  is also P − semiprime. 

Proof. By Proposition 2.10, N  is semiprime and we 
have: 
( ) ( )
( ) ( ) ( )

1 2

1 2

: ... :

: : ... :

t

t

N M N N N M

N M N M N M

= =∩ ∩ ∩

∩ ∩ ∩

             (20) 

 

... .P P P P= =∩ ∩ ∩ Therefore N  is P − semiprime. 

 
Lemma 3.17. Let M  be a multiplication R − module 
and L , N  be sub modules of M . Also let K  be a 
prime ideal of R  and P  be a K − semiprime 
submodule of M  such thatN L P⊆∩ . If 

( ):N M K⊄  then L P⊆ . 

Proof. We have ( ) ( )
( ) ( )

: :

: : .

N L P N L M P M K

N M L M K

⊆ ⇒ ⊆ = ⇒

⊆

∪ ∩

∩

  

 
and since K is a prime ideal of R , ( ):N M K⊆  or 

( ):L M K⊆ . Since ( ):N M K⊄ , we find that 

( ):L M K⊆ . From this we conclude that 

( ):L M M KM⊆ , that is, L KM⊆ . But ( ):P M K=  

implies that KM P⊆ . Therefore L KM P⊆ ⊆ . 
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4. Conclusion 
In this research we defined the notion of a semi-radical 
for sub modules of a module and find various properties 
for it. We also defined and investigated modules 
satisfying the semi-radical formula (s.t.s.r.f) and 
exhibited a module satisfying the above condition. 
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