SEMIRADICALS OF SUB MODULES IN MODULES

Hamid A. Tavallaee and Rezvan. Varmazyar

Abstract: Let R be a commutative ring and M be a unitary R-module. We define a semiprime submodule of a module and consider various properties of it. Also we define semi-radical of a submodule of a module and give a number of its properties. We define modules which satisfy the semi-radical formula (s.t.s.r.f) and present the existence of such a module.

Keywords: Prime sub module, semiprime sub module, radical and semi-radical of a module, modules satisfying the semi-radical formula.

1. Introduction
In this paper all the rings are commutative with identity and all the modules are unitary. Let R be a ring and M be an R-module. If N is a submodule of M we use the notation $N \subseteq M$. If the submodule N is generated by a subset S of M, we write $N = \langle S \rangle$. If N and K are sub modules of M, then the set $\{ r \in R | rK \subseteq N \}$ is denoted by $\langle N : K \rangle$ or simply by $(N : K)$ which is clearly an ideal of R. If I is an ideal of the ring R, we write $I \subseteq R$. In Section 2 we define prime and primary sub modules of an R-module M and in Lemma 2.2, we give equivalent definitions for prime and primary sub modules. Then we present our essential definition, that is, we define semiprime sub modules of a module. Various properties of semiprime sub modules are discussed. We have shown that if N is a semiprime submodule of an R-module M, then $(N : M)$ is a semiprime ideal of R but not conversely in general. In Lemma 2.8 we prove that the converse is also true if M is a multiplication module. In Section 3 we define radical of an R-module M and Theorem 3.1, shows that a submodule of a finitely generated multiplication module is semiprime if and only if it is radical. Next we define semi-radical of a submodule and also modules satisfying the semi-radical formula which is abbreviated as (s.t.s.r.f) and in Theorem 3.9 we show that such a module does exist. Theorem 3.12 is concerned with a number of properties of semi-radical of sub modules. After defining a P-semiprime sub module we consider some of its properties.

2. Some Elementary Results
We begin this section with the following definitions:

Definition 2.1. Let N be a proper submodule of an R-module M.
(a) N is called a prime submodule of M if for any $r \in R$ and $m \in M$, $rm \in N$ implies that $m \in N$ or $r \in (N : M)$.
(b) N is called a primary submodule of M if for any $r \in R$ and $m \in M$, $rm \in N$ implies that $m \in N$ or $r^n \in (N : M)$ for some positive integer n.

In (a) it can easily be shown that $P = (N : M)$ is a prime ideal of R and we say that N is P-prime. We recall that if I is an ideal of a ring R, then the radical of I, denoted by \sqrt{I}, is defined as the intersection of all prime ideals containing I. Alternatively, we define the radical of I as:

$\sqrt{I} = \{ r \in R | r^n \in I$ for some positive integer $n \}$.

Also if N is a primary submodule of an R-module M, then $(N : M)$ is a primary ideal of R and $P = \sqrt{(N : M)}$ is a prime ideal. We describe this situation by saying that N is P-primary.

Lemma 2.2. Let N be a proper submodule of an R-module M.
(i) N is a prime submodule of M if and only if $ID \subseteq N$ (with I an ideal of R and D a submodule of M) implies that $D \subseteq N$ or $I \subseteq (N : M)$.
(ii) N is a primary submodule of M if and only if for every finitely generated ideal I of R and any submodule D of M, $ID \subseteq N$ implies that $D \subseteq N$ or $I^n \subseteq (N : M)$ for some positive integer n.
(iii) Let P be a prime ideal of R, then N is a P-primary submodule of M if and only if (a)
$P \subseteq \sqrt{(N : M)}$, and (b) $cm \notin N$ for all $c \in R \setminus P$, $m \in M \setminus N$.

Proof. (i) \Rightarrow: Let $I \subseteq R$ and $D \subseteq M$ be such that $ID \subseteq N$ and let $D \nsubseteq N$. So there exists an element $x \in D \setminus N$. Let r be any element of I. Then $rx \in N$ and hence $r \in (N : M)$, Therefore $I \subseteq (N : M)$.

(ii) \Rightarrow: Let $r \in R$, $a \in M$ be such that $ra \in N$ and let $a \notin N$. By taking:

$I = (r)$ and $D = Ra$ we see that $ID \subseteq N$. But $D \nsubseteq N$ and hence $I \subseteq (N : M)$,

which implies that $r \in (N : M)$. Therefore N is a prime submodule of M.

(iii) \Rightarrow: If N is P–primary, then by definition $P = \sqrt{(N : M)}$. Now let $c \in R \setminus P$ and $m \in M \setminus N$. Let $cm \in N$, then there exists a positive integer n such that:

$c^n \in (N : M)$, that is, $c \in (N : M)$ (because $m \notin N$), a contradiction. Hence $cm \notin N$.

Let $r \in R$ and $m \in M$, $rm \in N$. Assume further that $m \notin N$, then by (b), r must belong to P and so $r \in \sqrt{(N : M)}$ by (a). Therefore N is a primary submodule of M. Next we must show that $P = \sqrt{(N : M)}$.

Let $r \in \sqrt{(N : M)}$, then $r^n \in (N : M)$ for some positive integer n, and so $r^nM \subseteq N$. Since N is proper, there exist $x \in M \setminus N$. Now $r^n x \in N$ and $x \notin N$ so by (b) we conclude that $r^n \in P$ and, as P is prime, $r \in P$. We find that $\sqrt{(N : M)} = P$ and therefore N is P–primary.

The following definition is essential in the rest of the paper.

Definition 2.3. A proper submodule N of an R–module M is said to be semiprime in M, if for every ideal I of R and every submodule K of M, $I^2 K \subseteq N$ implies that $IK \subseteq N$. Note that since the ring R is an R–module by itself, a proper ideal I of R is semiprime if for every ideals J and K of R, $J^2 K \subseteq I$ implies that $JK \subseteq I$.

Proposition 2.4. Let M be an R–module.

(i) If N is a prime submodule of M, then N is semiprime.

(ii) If N is a semiprime submodule of M, then $(N : M)$ is semiprime ideal of R.

Proof. (i) Let $I \subseteq R$, $K \subseteq M$ and $I^2 K \subseteq M$. Then $I (IK) \subseteq N$ and since N is prime, $I \subseteq (N : M)$ or $IK \subseteq N$. But $(N : M) \subseteq (N : K)$ and hence $I \subseteq (N : K)$, and so $IK \subseteq N$. In any case we see that $IK \subseteq N$, and therefore N is semiprime.

(ii) Let J and K be ideals of R and $J^2 K \subseteq (N : M)$. Hence $(J^2 K)M \subseteq N$, and so, $J^2 (KM) \subseteq N$. But $KM \subseteq M$, and N is semiprime, therefore $J(KM) \subseteq N$, and thus, $(JK)M \subseteq N$. Hence $JK \subseteq (N : M)$ and we conclude that $(N : M)$ is a semiprime ideal of R.

Part (i) of the above proposition implies that if P is a prime ideal of R then P is semiprime. In the next example we show that the converse of part (ii) of Proposition 2.1 is not valid in general.

Example 2.5. Let $R = Z$, $M = Z \oplus Z$ and $B = \langle (9, 0) \rangle$. Then it is clear that $(B : M) = (0)$ since Z is an integral domain, $(B : M) = (0)$ is a prime ideal and hence a semiprime ideal of Z. But B is not a semiprime submodule of M; because if we take $I = (3)$ and $K = < (2, 0) >$, then:

$I^2 K = \{ (18q, 0) | q \in Z \}$

and:

$IK = \{ (6q, 0) | q \in Z \}$

is not a subset of B.

It is clear that if N is a semiprime submodule of an R–module M and $I \subseteq R$, $K \subseteq M$ be such that $I^2 K \subseteq N$ for some positive integer n, then $IK \subseteq N$.

Theorem 2.6. Let N be a proper submodule of an R–module M. Then the following statements are equivalent:

(i) N is semiprime.

(ii) Whenever $r/m \in N$ for some $r \in R$, $m \in M$ and $t \in Z^+$, then $rm \in N$.

...
Proof. (i) \(\Rightarrow \) (ii). Let \(r \cdot m \in N \) where \(r \in R \), \(m \in M \) and \(t \in \mathbb{Z}^+ \). Taking \(I = (r) \) and \(K = (m) \) we have \(I^t K \subseteq N \) and so \(IK \subseteq N \) winch implies that \(rm \in N \).

(ii) \(\Rightarrow \) (i). Let \(I \leq R \) and \(K \leq M \) be such that \(I^2 K \subseteq N \). Consider the set:

\[
S = \left\{ ra \mid r \in I, a \in K \right\}
\]

(3)

Then for every \(r \in I, a \in K \) we have \(r^2 a \in I^2 K \subseteq N \) and hence \(ra \in N \). This implies that \(S \subseteq N \) and since \(IK \) is the submodule of \(M \) generated by \(S \), we must have \(IK \subseteq N \). Therefore \(N \) is semiprime.

Definition 2.7. An \(R \)-module \(M \) is said to be a multiplication module if for each submodule \(N \) of \(M \), \(N = IM \) for some ideal \(I \) of \(R \).

It can be easily shown that, an \(R \)-module \(M \) is a multiplication module if and only if \(N = (N : M)M \) for every submodule \(N \) of \(M \).

Lemma 2.8. Let \(M \) be a multiplication \(R \)-module. Then a submodule \(N \) of \(M \) is semiprime if and only if \((N : M) \) is a semiprime ideal of \(R \).

Proof. \(\Rightarrow \) : This is clear from Proposition 2.4 (ii).

\(\Leftarrow \) : Let \(I \leq R \), \(K \leq M \), be such that \(I^2 K \subseteq N \). Hence:

\[
I^2 K : M \subseteq (N : M).
\]

(4)

It can be shown that:

\[
I^2 (K : M) \subseteq (I^2 K : M)
\]

(5)

and so we obtain:

\[
I^2 (K : M) M \subseteq (N : M).
\]

(6)

But \((N : M)\) is a semiprime ideal of \(R \) and hence \(I(K : M) \subseteq (N : M) \). Thus we conclude that:

\[
I(K : M) M \subseteq (N : M) M,
\]

(7)

and using the fact that \(M \) is a multiplication \(R \)-module we have \(IK \subseteq N \). Therefore \(N \) is a semiprime submodule of \(M \).

The following lemma shows that the same situation, as before, holds for prime and primary submodules.

Lemma 2.9. Let \(M \) be a multiplication \(R \)-module. Then:

(a) A submodule \(N \) of \(M \) is prime if and only if \((N : M)\) is a prime ideal of \(R \).

(b) A submodule \(N \) of \(M \) is primary if and only if \((N : M)\) is a primary ideal of \(R \).

Proof. (a) \(\Rightarrow \) : Clear.

\(\Leftarrow \) : Let \(I \leq R \), \(D \leq M \) be such that \(ID \subseteq N \), then \((ID : M) \subseteq (N : M) \). But \((D : M) \subseteq (ID : M)\) and so \(I(D : M) \subseteq (N : M) \). Since \((N : M)\) is a prime:

\(R \) have \(I \subseteq (N : M) \) or \((D : M) \subseteq (N : M) \). Suppose that \(I \subseteq (N : M) \). Then \((D : M) \subseteq (N : M)\) and hence we have \((D : M) M \subseteq (N : M) M\), that is, \(D \subseteq N \). Hence \(N \) is a primary submodule of \(M \) by Lemma 2.2 (ii).

(b) \(\Rightarrow \) : Clear.

Proposition 2.10. Let \(\{P_i\}_{i \in I} \) be a non-empty family of semiprime sub modules of an \(R \)-module \(M \). Then \(P = \bigcap P_i \) is a semiprime submodule of \(M \).

Further if \(\{P_i\}_{i \in I} \) is totally ordered (by inclusion), then \(T = \bigcap P_i \) is also a semiprime submodule whenever \(T \neq M \).

Proof. Let \(I \leq R \) and \(K \leq M \) be such that \(I^2 k \subseteq P = \bigcap P_i \). Then \(I^2 k \subseteq P_i \) for every \(i \in I \), and since \(P_i \) is semiprime we have \(Ik \subseteq P_i \). Hence \(IK \subseteq \bigcap P_i = P \) and \(P \) is semiprime. Next we let \(T = \bigcap P_i \neq M \). The fact that \(\{P_i\}_{i \in I} \) is totally ordered by inclusion makes it clear that \(T \) is a submodule of \(M \). Let \(I \leq R \) and \(K \leq M \) be such that \(I^2 K \subseteq T \). Consider the set:

\[
S = \left\{ r k \mid r \in R, k \in K \right\}
\]

(8)

Then \(S \) is a generating set for the submodule \(IK \). If \(r \in I \), \(k \in K \) then \(r^2 k \in I^2 K \subseteq T \) and so for some \(i \in I \), \(r^2 k \in P_i \). Since \(P_i \) is semiprime this implies that \(rk \in P_i \). It follows that \(S \subseteq T \) and hence \(IK = \langle S \rangle \subseteq T \). Therefore \(T \) is also a semiprime submodule of \(M \).

Remark. Some authors define a semiprime submodule as an intersection of prime submodules. But by our
of a semiprime submodule of a module which we can find a semiprime submodule of a module which is not an intersection of prime sub modules, for example look at J. Jenkins and P.F. Smith in the proof of [1].

3. Radicals and Semi-Radicals
Let M be an R-module and N a submodule of M. If there exists a prime submodule of M which contain N, then the intersection of all prime sub modules containing N, is called the M-radical of M and is denoted by $\text{rad}_M N$, or simply by $\text{rad} N$. If there is no prime submodule containing N, then we define $\text{rad}_M N = M$. An ideal I of a ring R is called a radical ideal if $\sqrt{I} = I$. Similarly, we say that a submodule B of an R-module M is a radical submodule if $\text{rad} B = B$. It is easy to see that an ideal I of a ring R is semiprime if and only if it is radical. Because, let I be semiprime, and let $x \in \sqrt{I}$. Then $x^k \in I$ for some positive integer k. So $x^k I \subseteq I$, and since I is semiprime we have $x.1 = x \in I$. Therefore $I = \sqrt{I}$.

On the other hand, if $I = \sqrt{I}$ then by definition of \sqrt{I} and Propositions 2.4 (i) and 2.10, I is semiprime. Finally by Propositions 2.4 (i) and 2.10 we see that for any submodule B of an R-module M, $\text{rad} B$ is a semiprime submodule whenever $\text{rad} B \neq M$.

Theorem 3.1. Let M be a finitely generated multiplication R-module and let N be a proper submodule of M. Then N is semiprime if and only if it is radical.

Proof. Since $\text{ann}_R (M) \subseteq (N : M)$, by [2, Theorem 3, P.216],

$$\sqrt{(N : M)M} = \text{rad} (N : M)M .$$

(9)

As M is a multiplication module we have $(N : M)M = M$, and if N is semiprime, $(N : M)$ is a radical ideal. Therefore $
\sqrt{(N : M)M} = \text{rad} (N : M)M$ if and only if $(N : M)M = \text{rad} (N : M)M$. If $N = \text{rad} N$

this implies that N is a radical submodule of M, that is, $N = \text{rad} N = \cap P (P$ is a prime submodule of M containing N). Hence by Propositions 2.4 (1) and 2.10 N is a semiprime submodule of M. The proof is now complete.

After Remark 2.11 we may ask under what condition a semiprime submodule is the intersection of prime submodules containing it. The following corollary can be considered as an answer.

Corollary 3.2. Let M be a finitely generated multiplication R-module and let N be a proper submodule of M. Then N is semiprime if and only if $N = \cap P (P$ is a prime submodule of M containing N).

Proof. (⇒) If N is semiprime then by Theorem 3.1, it is radical, that is, $N = \cap P (P$ is a prime submodule of M containing N).

(⇐): By Propositions 2.4 (i) and 2.10, N is semiprime.

Proposition 3.3. If M is a finitely generated R-module, then every proper submodule of M is contained in a semiprime sub module.

Proof. By Corollary of [3, Proposition 4, P.63]. every proper submodule of M is contained in a prime submodule. So by Proposition 2.4 (i), we have the result.

Definition 3.4. (1) A semiprime submodule P of an R-module M is called a minimal semiprime of a proper submodule N if $N \subseteq P$ and there is no smaller semiprime submodule with this property.

(2) A minimal semiprime of $0 =< 0_M >$ is called a minimal semiprime submodule of M.

Theorem 3.5. Let M be an R-module. If a submodule N of M is contained in a semiprime submodule P, then P contains a minimal semiprime submodule of N.

Proof. It is similar to the proof of [5, Theorem 4, P.84].

Proposition 3.6. Every proper submodule of a finitely generated R-module M possesses at least one minimal semiprime submodule of M.

Proof. Let N be a proper submodule of M, then by Proposition 3.3, N is contained in a semiprime submodule of M.

Corollary 3.7. Every semiprime submodule of an R-module M contains at least one minimal semiprime submodule of M.

Proof. Let P be a semiprime submodule of M and take $N =< 0 >$ in the Theorem 3.5. Then P contains a minimal semiprime submodule of $< 0 >$, and so a minimal semiprime submodule of M.

Definition 3.8. Let M be an R-module and $N \leq M$. If there exists a semiprime submodule of M which contains N, then the intersection of all semiprime sub modules containing N is called the semi-radical of N and is denoted by $S - \text{rad}_M N$, or simply by $S - \text{rad} N$. If there is no semiprime submodule containing N, then we define...
We conclude that:
\[
\text{PradCSradBSradSCradS} \subseteq \text{rad} \quad \text{(16)}
\]

We say that \(M\) satisfies the semi-radical formula, \(M\) (s.t.s.r.f) if for any \(N \leq M\), the semi-radical of \(N\) is equal to the submodule generated by its envelope, that is, \(S - \text{rad}N = \{E(N)\}\). We already know that \(\langle E(N) \rangle \subseteq \text{rad}N\), by [4, P.1815]. Now let \(x \in E(N)\) and \(P\) be a semiprime submodule of \(M\) containing \(N\). Then \(x = ra\) for some \(r \in R, a \in M\) and for positive integer \(n, r^n a \in N\). But \(r^n a \in P\) and since \(P\) is semiprime we have \(ra \in P\). Hence \(E(N) \subseteq P\). We conclude that \(E(N) \subseteq \bigcap \langle P \rangle\) (\(P\) is a semiprime submodule containing \(N\)). So \(E(N) \subseteq S - \text{rad}N\). On the other hand, since every prime submodule of \(M\) is clearly semiprime, we have \(S - \text{rad}N \subseteq \text{rad}N\). We see that:
\[
\langle E(N) \rangle \subseteq S - \text{rad}N \subseteq \text{rad}N \quad \text{(11)}
\]

Now we present an \(R\)-module which satisfies the semi-radical formula.

Theorem 3.9. Let \(M\) be a finitely generated multiplication \(R\)-module. Then \(M\) satisfies the semi-radical formula.

Proof. Let \(N \leq M\), then by [4, Theorem 4.4], we have \(\langle E(N) : M \rangle = (\text{rad}N : M)\).

Hence \(\langle E(N) : M \rangle M = (\text{rad}N : M)M\) and since \(M\) is a multiplication \(R\)-module, \(\langle E(N) \rangle = \text{rad}N\).

Next from (4) we have:
\[
\langle E(N) \rangle M \subseteq (S - \text{rad}N : M)M \subseteq (\text{rad}N : M)M
\]
that is,
\[
\langle E(N) \rangle \subseteq S - \text{rad}N \subseteq \text{rad}N.
\]

Thus we find that \(S - \text{rad}N = \{E(N)\}\).

Remark. Under the conditions of Theorem 3.9, we see that for any submodule \(N \neq M\) of \(M\) we always have \(\text{Rad}N = S - \text{Rad}N\).

Proposition 3.10. Let \(M\) be a finitely generated \(R\)-module. Then the semi-radical of a proper submodule \(N\) of \(M\) is the intersection of its minimal semi-prime sub modules.

Proof. This is clear by using Theorem 3.5 and Proposition 3.6. For the rest of this section we state and prove some properties of semi-radical of sub modules.

Theorem 3.11. Let \(B\) and \(C\) be sub modules of an \(R\)-module \(M\). Then,
1. \(B \subseteq S - \text{rad}B\),
2. \(S - \text{rad}(S - \text{rad}B) = S - \text{rad}B\),
3. \(S - \text{rad}(B \cap C) \subseteq S - \text{rad}B \cap S - \text{rad}C\), and we have the equality when for every semiprime submodule \(P\), \(B \cap C \subseteq P\) implies that \(B \subseteq \text{Por}C \subseteq P\),
4. \(S - \text{rad}(B + C) = S - \text{rad}(S - \text{rad}B + S - \text{rad}C)\),
5. \((B : M) \subseteq (S - \text{rad}B : M)\),
6. If \(M\) is finitely generated, then \(S - \text{rad}B = M\) if and only if \(B = M\),
7. If \(M\) is finitely generated, then \(B + C = M\) if and only if \(S - \text{rad}B + S - \text{rad}C = M\),
8. \(S - \text{rad}I M = S - \text{rad}M^I\) for every ideal \(I\) of \(R\).

Proof. (1) clear.

(2) Since \(S - \text{Rad}B\) is semiprime by Proposition 2.10, we have:
\[
S - \text{Rad}(S - \text{Rad}B) = S - \text{Rad}B. \quad \text{(14)}
\]

(3) Let \(P\) be a semiprime submodule of \(M\) such that \(B \subseteq P\), so \(B \cap C \subseteq P\) and hence \(S - \text{rad}(B \cap C) \subseteq S - \text{rad}B\). By a similar argument we have \(S - \text{rad}(B \cap C) \subseteq S - \text{rad}C\). Now let \(P\) be a semiprime submodule of \(M\) such that \(B \cap C \subseteq P\) and assume that \(B \subseteq P\). Then \(S - \text{rad}B \subseteq P\) and so \(S - \text{rad}B \cap S - \text{rad}C \subseteq P\). Since \(P\) is arbitrary this implies that \(S - \text{rad}B \cap S - \text{rad}C \subseteq S - \text{rad}(B \cap C)\) and hence we have the equality.

(4) Let \(P\) be a semiprime submodule of \(M\) such that \((S - \text{rad}B + S - \text{rad}C) \subseteq P\). So \(S - \text{rad}B \subseteq P\) and \(S - \text{rad}C \subseteq P\). Hence \(B \subseteq P\) and \(C \subseteq P\) which implies \(B + C \subseteq P\). Therefore \(S - \text{rad}(B + C) \subseteq P\). But \(P\) is chosen arbitrary, so:
\[
S - \text{rad}(B + C) \subseteq S - \text{rad}(S - \text{rad}B + S - \text{rad}C). \quad \text{(15)}
\]

Now suppose that \(P\) be a semiprime submodule such that \(B + C \subseteq P\). So \(B \subseteq P\) and \(C \subseteq P\). Hence \(S - \text{rad}B \subseteq P\) and \(S - \text{rad}C \subseteq P\) and therefore \(S - \text{rad}B + S - \text{rad}C \subseteq P\). But \(S - \text{rad}(S - \text{rad}B + S - \text{rad}C) \subseteq P\) and we conclude that:
\[
S - \text{rad}(S - \text{rad}B + S - \text{rad}C) \subseteq S - \text{rad}(B + C). \quad \text{(16)}
\]
(5) If \(S - \text{rad}B = M \), then we have the result. So let \(P \) be a semiprime submodule of \(M \) such that \(B \subseteq P \). So \((B : M) \subseteq (P : M) \). We know that \((P : M) \) is a semiprime ideal of \(R \) and we have shown that \(\sqrt{(P : M)} = (P : M) \). Hence
\[
\sqrt{(B : M)} \subseteq (P : M) \implies (P : M) P \subseteq P,
\]
and since \(P \) can be any semiprime submodule of \(M \) containing \(B \), we have \((B : M) M \subseteq S - \text{rad}B \), that is, \(\sqrt{(B : M)} M \subseteq (S - \text{rad}M) : M \).

(6) If \(B = M \), then \(S - \text{rad}B = S - \text{rad}M = M \). Conversely, let \(S - \text{rad}B = M \), but \(B \neq M \). Since \(M \) is finitely generated, it contains a prime and so a semiprime submodule \(P \) containing \(B \), by Corollary after Proposition 4 of [3]. Hence \(S - \text{rad}B \neq M \), a contradiction.

(7) Using parts (4) and (6) we have:
\[
(B : M) M \subseteq S - \text{rad}B correlation.
\]
(8) If \(M \) has no semiprime submodule containing \(IM \), then \(S - \text{rad}IM = M \) and we have:
\[
I \subseteq S - \text{rad}IM \implies I M \subseteq S - \text{rad}IM \implies S - \text{rad}IM = M \implies S - \text{rad}IM.
\]

Now let \(P \) be a semiprime submodule of \(M \) such that \(IM \subseteq P \), so \(I \subseteq (M : P) \subseteq (P : M) \) and since \((P : M) \) is semiprime \(\sqrt{I} \subseteq \sqrt{(P : M)} = (P : M) \). So \(\sqrt{I} \subseteq P \) and hence \(S - \text{rad}\sqrt{I} = P \). Since \(P \) is arbitrary we have:
\[
S - \text{rad}\sqrt{I} M = S - \text{rad}\sqrt{I} M.
\]

Proof. We know that \(\sqrt{I^n} \subseteq \sqrt{I} \) by part (8) of Theorem 3.11:
\[
S - \text{rad}\sqrt{I^n} M = S - \text{rad}\sqrt{I} M = S - \text{rad}\sqrt{I} M.
\]

Proposition 3.13. Let \(Q \) be a \(P \)-primary submodule of an \(R \)-module \(A \). Then \(S - \text{rad}Q = S - \text{rad}\langle Q + PA \rangle \).

Proof. We have \(Q \subseteq Q + PA \), so \(S - \text{rad}Q \subseteq S - \text{rad}\langle Q + PA \rangle \). Let \(S - \text{rad}Q = \bigcap_{i \in I} P_i \), where any \(P_i \) is a semiprime submodule of \(A \) containing \(Q \). We see that
\[
P = \sqrt{(Q : A)} \subseteq \sqrt{(P_i : A)} = (P_i : A) \]
implies \(PA \subseteq P_i \). So \((Q + PA) \subseteq P_i \), for every \(i \in I \) and hence \(S - \text{rad}(Q + PA) \subseteq P_i \). Therefore \(S - \text{rad}(Q + PA) \subseteq \bigcap_{i} P_i \) and so \(S - \text{rad}Q = \bigcap_{i} P_i \).

Definition 3.14. Let \(N \) be a semiprime submodule of an \(R \)-module \(M \), and let \(P = \sqrt{(N : M)} = (N : M) \). We call \(N \) a \(P \)-semiprime submodule of \(M \), if \(P \) is prime ideal of \(R \).

Lemma 3.15. Let \(M \) be a finitely generated \(R \)-module and let \(K \) be a maximal ideal of \(R \). If \(Q \) is a \(K \)-primary submodule of \(M \), then \(S - \text{rad}Q \) is a \(K \)-semiprime sub module.

Proof. By Theorem 3.11, part (5), we have \(K = \sqrt{(Q : M)} \subseteq (S - \text{rad}Q : M) \).

But \(K \) is a maximal ideal of \(R \), so \((S - \text{rad}Q : M) = R \) or \((S - \text{rad}Q : M) = K \). If \((S - \text{rad}Q : M) = R \) then \(S - \text{rad}Q = M \) and by Theorem 3.11, part (6) we have \(Q = M \) which is a contradiction since \(Q \) is primary. Hence \((S - \text{rad}Q : M) = K \) and since \(S - \text{rad}Q \) is an intersection of semiprime sub modules containing \(Q \) it is semiprime and in fact \(K \)-semiprime.

Proposition 3.16. Let \(N_1, N_2, \ldots, N_I \) be \(P \)-semiprime sub modules of an \(R \)-module \(M \). Then \(N = N_1 \cap N_2 \cap \cdots \cap N_I \) is also \(P \)-semiprime.

Proof. By Proposition 2.10, \(N \) is semiprime and we have:
\[
(N : M) = (N_1 : M) \cap (N_2 : M) \cap \cdots \cap (N_I : M) = \bigcap_{i} (N_i : M).
\]

Therefore \(N = P \cap \cdots \cap P = P \). Therefore \(N \) is \(P \)-semiprime.

Lemma 3.17. Let \(M \) be a multiplication \(R \)-module and \(L \), \(N \) be submodules of \(M \). Also let \(K \) be a prime ideal of \(R \) and \(P \) be a \(K \)-semiprime submodule of \(M \) such that \(N \cap L \subseteq P \). If \((N : M) \subseteq K \) then \(L \subseteq P \).

Proof. We have \(N \cup L \subseteq P \Rightarrow (N \cap L : M) \subseteq (P : M) = K \Rightarrow (N : M) \cap (L : M) \subseteq K \).

and since \(K \) is a prime ideal of \(R \), \((N : M) \subseteq K \) or \((L : M) \subseteq K \). Since \((N : M) \subseteq K \), we find that \((L : M) \subseteq K \). From this we conclude that \((L : M) M \subseteq KM \), that is, \(L \subseteq KM \). But \((P : M) = K \) implies that \(KM \subseteq P \). Therefore \(L \subseteq KM \subseteq P \).
4. Conclusion

In this research we defined the notion of a semi-radical for sub modules of a module and find various properties for it. We also defined and investigated modules satisfying the semi-radical formula (s.t.s.r.f) and exhibited a module satisfying the above condition.

References

