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Abstract: In this paper we study of collocation method with Radial Basis Function 
to solve one dimensional time dependent Schrodinger equation in an unbounded 
domain. To this end, we introduce artificial boundaries and reduce the original 
problem to an initial boundary value problem in a bounded domain with 
transparent boundary conditions that involves half order fractional derivative in t. 
Then in three stages we use the Laplace Transform method, the collocation method 
and finally the Legender expansion method. Numerical examples are given to show 
the effectiveness of the scheme. 

 
Keywords: The Schrodinger equation, Collocation method, Radial Basis Function, 
Fractional derivative boundary condition, Legendre expansion method 

 
1. Introduction1 

The time dependent Schrodinger equation is the 
base of quantum mechanics [1, 2]. This model equation 
also arises in many other practical domains of physical 
and technological interest, e.g. optics, seismology and 
plasma physics. There are a lot of studies on the 
numerical solution of initial-boundary problems for 
solving the linear or nonlinear Schrodinger equation [3, 
4, 5, 6]. When we want to solve numerically a 
differential equation defined on an infinite domain, it is 
necessary to consider a finite sub domain and to use 
artificial boundary conditions in such a way that the 
solutions in the finite sub domain approximate the 
original solution. If the approximation is exact, the 
transfer is called exact and the corresponding artificial 
boundary condition is called exact or transparent. 
In this paper application of the collocation method with 
RBF to solve one dimensional time dependent 
Schrodinger equation is investigated. 
A fairly new approach to solving PDEs is through 
Radial Basis Functions (RBFs). The RBFs depend only 
on the distance say (|| ||)ix x  , where ||.||  denotes 

the Euclidean norm. The RBFs may also have a shape 
parameter c , in which case )(r  is replaced with 

),( cr , where )(r  is some function defined for 

0r . The most popular RBFs are given as follows: 
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(1) Multiquadrics (MQ): 

,,...12,...,5,3,1,)()( 222  Ncrr 


 

 
(2) Inverse Multiquadrics (IMQ): 

,,...12,...,5,3,1,)()( 222
 Ncrr 



  

 
(3) Gaussians (GA): 

),exp()( 22rcr   

 
 (4) Inverse quadrics (IQ): 

122 )()(  crr . 

 
A key feature of an RBF method is that it does not 
require a grid. The only geometric properties that are 
used in an RBF approximation are the pair-wise 
distances between points. Since the distances are easy 
to compute therefore working in higher dimensions 
spatial space does not increase the computational time. 
The method works with points scattered throughout the 
domain of interest, and the RBF interpolant is a linear 
combination of RBFs centered at the scattered   points 

ix : 

 cxxcxs i

n

i
i ,),(

1




 , 

where the coefficients i  are usually determined by 

collocation with given discrete data, such as function 
values or derivative information. For study more about 
this discussion see the book by Cheney and Light [7]. 
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The remainder of this paper is organized as follows: in 
section 2 we introduce one dimensional time dependent 
Schrodinger equation with transparent boundary 
conditions (TBCs) and the construction of the discrete 
scheme. In section 3 we give collocation method with 
RBFs for approximation the problem. The  inversion 
formula for the Laplace transform is described in 
section 4. The numerical results are proposed in section 
5.  
 

22..  TThhee  CCoonnssttrruuccttiioonn  ooff  tthhee  DDiissccrreettee  SScchheemmee    
In this paper, we consider the following linear 

equation [8]: 
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Where  Ttxtx  0,),( , ),( txV  

designates a given potential (real valued) function on 
 , )(0 xu  is the complex initial data given on R , and 

the unknown function ),( txu is a complex value 

function on  . Let us split the initial domain   into 
three regions. For this reason, first we introduce two 
artificial boundaries as follows: 
 

 Ttxtx  0,0),(0 , 

 Ttxtx  0,1),(1 . 

 

Then the domain   is divided into three parts. Two 
unbounded parts are as follows:  
 

 Ttxtx  0,0),(0 , 

 Ttxtx  0,1),(1 , 

 
and one  bounded part is: 
 

 Ttxtxc  0,10),( . 

 

The finite sub domain c  is our computational 

domain. Let 1),( txV  and 0u  is compact support 

with: 
 

  ].1,0[sup 0
up  

 
We consider the restriction of the solution of problem 

(1) on the domain c . The TBCs for Schrodinger 
equation have been  independently derived by several 
authors from various application fields [9, 10]. They 
are non-local in  t  and read: 
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Using the notations of the Riemann- Liouville 
fractional derivative, the boundary conditions (2) and 
(3) can be written as: 
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As a consequence, the boundary value problem to 
approximate is now given by: 
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This initial boundary value problem is well-posed and 
its solution coincides with the solution of the original 

problem (1) restricted to 
c

 [11]. 
Here, we focus on discrete model for boundaries. We 
consider 0)0,1()0,0(  uu  and let: 
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According to the equation (7), we can rewrite 
equations (5) and (6) as follows: 
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By applying Laplace transform for equations (4), (8) 
and (9), we have: 
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For discretization, we consider: 
 

,
1

N
h   

 
where N  is positive integer and h  is spatial sizes. 
The one dimensional nodal points are defined as: 
 

....,,2,1,0, Niihxi   

 
33..    DDeessccrriippttiioonn  ooff  tthhee  CCoollllooccaattiioonn  MMeetthhoodd  WWiitthh  

RRBBFF    
In this section, we study collocation method with 

RBF. Let  N

iix 0
 be 1N   distinct collocation 

nodal points in ]1,0[ . In this study we consider 

multiquadric RBFs as defined as: 
 

,...,,2,1,0,0,)()( 2 Niccrrx iii   
 

where: 
 

 .ii xxr   

The unknown function ),( txu can be approximated as: 
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where : 
 

,))(()(� taLsa ii   

 
and )(� sai is unknown and )(xi is known. By using 

collocation method for PDE, we have the following 
equation:  
 

)15(.1...,,2,1,0),(  Nksxres k

 
Substituting (13) and (14) into (15), we can obtain the 
following scheme: 
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After simplify, we have: 
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Therefore, substituting (14) into (11) and (12), we can 
obtain the following scheme: 
 

0 1 1

0 1 1

� � �( ) ( ) ... ( ) 0 , (17)

� � �( ) ... ( ) ( ) 0, (18)

N N

N N N

Ks a s W a s W a s

Q a s Q a s Ks a s






   

   

 
Where: 
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Introducing the state vector : 
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We  have matrices form of  (16), (17) and (18) as 
follows:  
 

)19(,)0()(�)( aEsasH k 

 
Where EsH k ),( are matrices in order 

)1()1(  NN . Uniqueness of the solution (19) is a 

consequence of the following theorem. 
 
3.1. Theorem: If f  completely monotone but not 

constant on ],0[  , then the function )(
2

xfx   is 

a radial, strictly positive definite function on any inner-
product space. Thus, for any n  distinct points 

nxxx ...,,, 21
 in such a space the matrix 

)(
2

jiij xxfA   is positive definite (and therefore 

nonsingular) [7]. 
 
We can obtain the corresponding system of (19) which 
involves )1( N  equations and )1( N  unknowns. 

This system can be solved either a direct method or 
iteration methods. The next step of our numerical 
scheme consist of approximation inversion of Laplace 
transform. We discuss briefly in the following section. 

  
44..  TThhee  IInnvveerrssiioonn  FFoorrmmuullaa  ffoorr  tthhee  LLaappllaaccee  

TTrraannssffoorrmm  
The problem of the recovery of a real function 

0,)( ttu , given its Laplace transform [12]: 
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for real values of s , is an ill-posed problem in the 
sense of Hadamard and is therefore affected by 
numerical instability. This difficulty is not very serious 
when )(sU  is also known for complex values of s . In 

such a case, several methods have been developed 
which, in general, work rather well even if they require 
a large computational cost and high-precision 
arithmetic. More stable method can be find in [13]. 
Here, we explain one of the inversion formulae for the 
calculation of the original function 0,)( ttu , and it 

is called Legendre expansion method [14]. It's shown 
that of the Laplace transform i.e. )(tu can be 

formulated, by using Legendre polynomials. If )(tu is 

defined at each point of the positive real line, then the 
function: 
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Making use of Murphy's formula: 
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we  see that: 
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Hence we have the inversion formula: 
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with the coefficients na  given by the formula (20). 

This formula is useful when the transform U  is known 
at a discrete set of points. 
 

55..  NNuummeerriiccaall  RReessuullttss    
Example 1. Consider initial value problem of 
Schrodinger equation as follows: 
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It's analytic solution : 
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We take number of nodes 7 and bases function as 
follows: 
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We can see that corresponding error is: 
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Example 2. Consider initial value problem of 
Schrodinger equation as follows: 
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It's  analytic solution : 
 

.)1)(1(),( txexitxu 
  

 
We take number of nodes 7 and bases function as 
follows: 
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We can see that corresponding error is:  
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66..  CCoonncclluussiioonn  

In this paper, we have presented a scheme to 
obtain a numerical solution of the Schrodinger 
equation with TBCs using collocation method. The 
results reported here show that the collocation method 
based on  RBF has many advantages as compared with 
other methods such as finite difference method and 
finite element method. Finite difference methods can 
be made high-order accurate, but require a structured 
grid. Finite element methods are highly flexible, but it 
is hard to achieve high-order accuracy, and both coding 
and mesh generation become increasingly difficult 
when the number of space dimensions increases. The 
most powerful feature of our scheme is flexibility of 
implementation and application. The numerical scheme 
consists of two parts, collocation method and Laplace 
transform method. Both methods are ill-condition. To 
stabilize the collocation method, we may use RBFs by 
compact support. Recently, more stable methods 
recommended by investigators. On the other hand, we 
can obtain approximation function and it is easy to 
generalize this method to higher dimension. 
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